
Facultade de Informática

TRABALLO FIN DE GRAO
GRAO EN ENXEÑARÍA INFORMÁTICA

MENCIÓN EN COMPUTACIÓN

Extending a property-based testing tool
with parallel and distributed execution

Estudante: Pablo Costas Sánchez
Dirección: Laura Milagros Castro Souto

Konstantinos Sagonas

A Coruña, setembro de 2020

To Sam and Diego

Acknowledgements

First of all, I would like to express my most sincere gratitude to Laura and Kostis, my supervi-
sors of this project, as without them it would not have occurred. I would like to thank Laura
for her kindness, support and for being ever so patient with me, always helping me out when
in need, and motivating me to push forward, whatever the circumstances. I would like to
thank Kostis not only as his is the tool this project is about but also for his good feedback and
interest in our work, besides the help he has given during this year.

I would like to also thank my family and friends, those of old and those that I met during
this degree, for putting up with me every day and throughout these years.

Finally, I would like to thank Diego for always making me smile and for all the happiness
that he has brought to my life.

Abstract

Software testing plays an important role in software development, as it not only helps find
bugs in the code but also boosts the confidence of the developers that the program behaves
correctly, besides reducing the cost of fixing such errors or flaws if done in the early stages.

One of the most common methods of software testing is unit testing, which tests individ-
ual components of the software by asserting whether, for cherry-picked test cases (i.e., for a
given input), the component or unit produces the expected output. This approach to testing
has however its downsides, as it is a tedious time-consuming activity, prone to errors of the
developer, such as not covering every possible case.

Property-Based Testing is amethod of testing that fixes the problems found in unit testing,
for it uses properties, which are simply logical statements that capture partial correctness of
the program, to generate random input to test whether the program satisfies those properties
or not. However, while automation allows for the execution of many more tests, increasing
their number also means longer test running times.

The main goal of this project is to extend PropEr, the most powerful property-based test-
ing tool written in Erlang, with parallel and distributed execution and measure the obtained
speedup from doing so.

Resumo

Probar o noso código é unha das cousas máis importantes na disciplina do desenvolve-
mento do software, xa que non só nos axuda a encontrar erros no noso código, se non que
tamén aumenta a confianza das desenvoldedoras e desenvoldedores de que o seu programa se
comporta correctamente, ademais de reducir o custo de arranxar devanditos erros ou fallos
se se fai dende o inicio.

Un dos métodos máis comúns para facer probas ao software son as denominadas probas
de unidade, nas que para probar compoñentes individuáis do software, mírase se para casos
específicos (ou sexa, para entradas concretas) o compoñente ou unidade produce a saída es-
perada. Esta forma de probar o código ten, porén, as súas desvantaxes, xa que é unha tarefa
tediosa e pesada de facer que consume moito tempo e, a maiores, é propensa e susceptíbel a
erros das desenvoldedoras e desenvolvedores, coma non cubrir tódolos casos posibles.

As probas baseadas en propiedades son un método de probar software que soluciona estes
problemas das probas de unidade, xa que no seu lugar empregan o concepto de propiedade,
que é un predicado lóxico que captura a corrección parcial do programa. Estas propiedades
son usadas para xerar entradas aleatorias para comprobar se o programa satisface as súas

expectativas ou non. Porén aínda que a automatización permite realizar moitas máis probas,
os tempos de execución tenden a incrementarse correlativamente.

O obxectivo principal deste proxecto é estender PropEr, a ferramenta de probas baseadas
en propiedades máis potente escrita en Erlang, para permitir a súa execución paralela ou
distribuída.

Keywords:

• Functional programming

• Property-Based Testing

• Erlang

• Concurrency

• Distributed execution

• Parallelization speedup

Palabras chave:

• Programación funcional

• Probas baseadas en propiedades

• Erlang

• Concurrencia

• Execución distribuída

• Aceleración por paralelización

2

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives . 2
1.3 Methodology . 3
1.4 Work plan . 4

1.4.1 Project cost . 5
1.5 Report layout . 6

2 Background 7
2.1 Erlang/OTP . 7
2.2 Property-Based Testing . 9

2.2.1 Unit Testing . 9
2.2.2 Property-Based Testing . 11

2.3 PropEr . 12
2.3.1 Stateless vs. stateful properties . 15

3 Development 17
3.1 Design . 17

3.1.1 Proposed design . 18
3.1.2 Test distribution among workers . 19

3.2 A PropEr study . 21
3.3 Implementation . 28

3.3.1 Preamble . 28
3.3.2 Project structure . 28
3.3.3 A PropEr implementation . 29
3.3.4 Problems faced during the Implementation stage 36
3.3.5 Implementing the different strategies of test distribution 37

i

Contents

4 Testing and benchmarking 39
4.1 Testing the implementation . 39
4.2 Benchmarking . 40

4.2.1 Picking a strategy to split the tests . 41
4.2.2 Parallel execution benchmarking . 47
4.2.3 Distributed execution benchmarking 51

4.3 Conclusions . 54

5 Conclusions 63
5.1 Follow-up . 63

5.1.1 Impact on the code . 63
5.1.2 Lessons learned . 64

5.2 Future work . 65

List of Acronyms 69

Glossary 71

Bibliography 73

ii

List of Figures

1.1 Iterations of the project . 4

3.1 Even distribution of tests among the workers 19
3.2 Uneven distribution of tests among the workers 20
3.3 Batches distribution of tests among the workers 20
3.4 N th sequence distribution of tests among the workers 21
3.5 Tracing visualized using the Event Tracer . 22
3.6 Exported definitions (i.e., functions and types) of the tool’s main module . . . 23
3.7 Control flow of the tool originally . 25
3.8 Control flow of the tool after implementing the design 26

4.1 Reports of Travis CI in the project . 40
4.4 Results of compile_prop:compile() 56
4.7 Results of beam_types_prop:associativity() 57
4.10 Results of crypto_ng_api:prop__crypto_one_time() 58
4.13 Results of crypto_ng_api:prop__crypto_init_update_final 59
4.16 Results of ssh_eqc_encode_decode:prop_ssh_decode_encode() 60
4.19 Results of shell_docs_prop:prop_render() 61

iii

List of Figures

iv

List of Tables

1.1 Breakdown by iteration of the effort of the project 5
1.2 Total cost of the project . 5

4.1 Cowlib: prop_str_huffman() parallel benchmarks 43
4.2 Kazoo: prop_normalize() parallel benchmarks 44
4.3 Zotonic: prop_s_utf8a() parallel benchmarks 45
4.4 Diffy: prop_inner_diff() parallel benchmarks 46
4.5 Erlang/OTP: compiler, compile() parallel benchmarks 48
4.6 Erlang/OTP: compiler, associativity() parallel benchmarks 48
4.7 Erlang/OTP: crypto, prop__crypto_one_time() parallel bench-

marks . 49
4.8 Erlang/OTP:crypto,prop__crypto_init_update_final() par-

allel benchmarks . 49
4.9 Erlang/OTP: ssh, prop_ssh_decode_encode() parallel benchmarks 50
4.10 Erlang/OTP: stdlib, prop_render() parallel benchmarks 51
4.11 Erlang/OTP: compiler, compile() distributed benchmarks 52
4.12 Erlang/OTP: compiler, associativity() distributed benchmarks . . 52
4.13 Erlang/OTP:crypto,prop__crypto_one_time() distributed bench-

marks . 52
4.14 Erlang/OTP:crypto,prop__crypto_init_update_final() dis-

tributed benchmarks . 53
4.15 Erlang/OTP: ssh, prop_ssh_decode_encode() distributed bench-

marks . 54
4.16 Erlang/OTP: stdlib, prop_render() distributed benchmarks 54

v

List of Tables

vi

Listings

2.1 Example of a Hello World program in Erlang 8
2.2 Example of a concurrent program in Erlang . 8
2.3 Program that reverses the order of a list . 9
2.4 Example of unit testing in Erlang . 10
2.5 Example of a successful EUnit invocation . 10
2.6 Example of property-based testing in Erlang 12
2.7 Example of a successful PropEr invocation . 13
2.8 Example of a failed PropEr invocation . 13
2.9 Example of property-based testing in Erlang 14
2.10 Example of calling proper:module/1 . 14
3.1 Exported definitions (i.e., functions and types) of the tool’s main module . . . 23
3.2 Code of original proper:inner_test/2 24
3.3 Simplified code of original proper:perform/3 27
3.4 Directory structure of the tool . 28
3.5 Definition of the FORALL/3 macro . 30
3.6 Code of proper:quickcheck/1,2 . 30
3.7 Code of proper:test/2 . 31
3.8 Type definition of proper:opts() record 32
3.9 Code of proper:inner_test/2 with the modifications applied 33
3.10 Code of proper:perform_with_nodes/2 33
3.11 Code of proper:start_node/1 . 35
3.12 Code of proper:ensure_code_loaded/1 35
3.13 Code of proper:maybe_load_binary/2 37
5.1 Comparison of LOC (Lines of Code) PropEr had before and after our work . . 64
5.2 Total of additions and deletions done throughout our work 64

vii

Listings

viii

Chapter 1

Introduction

ThRoughout this first chapter of the report we will cover the motivations that pushed us
to do this project, a short summary of the current situation, and the objectives of the

final version of the application resulting from this project should satisfy.

1.1 Motivation

One of the most important parts of software development is testing. It has been stated multi-
ple times that not only the cost of not testing your software increases over time, but it is also
less expensive to find and fix problems in earlier stages of development than while in pro-
duction or, in other words, that the cost of finding those defects exceeds that of developing
the software originally. On the one hand, it boosts the developer’s confidence in their code
behaving the way it is supposed to; on the other hand, it can become a boring and tiresome
task to cherry-pick the cases to test and, as Dijkstra said, “program testing can be used very
effectively to show the presence of bugs but never to show their absence” [1]. Nonetheless, it
is a necessity that should not be avoided: tests are critical to program quality, and even more
in long-lived projects.

All in all, even though software testing plays an important role in software development,
in practice it is almost always lacking in some aspect: be it because it is non-existent, either
because when developing or maintaining the software it was not thought that necessary, or
because although present, it is not able to properly accomplish its function as an assessment
of the software’s functionality.

Software testing is also a quite large area of software development, having numerous
approaches (e.g., static testing, dynamic testing, passive testing, white-box testing, black-box
testing) and levels of testing (e.g., unit testing, integration testing, system testing, acceptance
testing), with unit testing being one of the most common methods used to perform the job.

This is where Property-Based Testing (PBT) [2] comes into play, as it is a type of testing

1

1.2. Objectives

that uses generated data as input for the tests, enabling the developer to instead of manually
writing all the possible ways the code can be used, specify properties they want their program
to satisfy. Then, through the use of a generative-testing tool (i.e., a property-based testing tool)
of their liking (e.g.,QuickCheck [2, 3], PropEr [4, 5], test.check [6], etc), randomized input data
is generated and used to test whether the properties are satisfied by the code. Furthermore,
the concept of a property is not a complex one: it is a logical statement that captures the
partial correctness of the code. In other words, a rule that dictates that as long as the input
the code is given belongs in a certain set of values it should behave as expected (i.e., produce
outputs that fulfill certain condition(s), present certain traits, or belong, in turn, to a certain
range).

However, this type of testing has its downsides: scaling up the number of tests to a large
number or checking if complex properties hold can take a quite significant amount of time.

There are other approaches to testing worth mentioning, such as formal verification and
theorem proving, since both techniques are quite helpful in verifying the correctness of soft-
ware. However, not only they suffer from having an excessively steep learning curve, but
also from being hard to scale up to current software programs because of issues as the state
explosion problem and the like.

Because of this and that with the ever-improving computer specifications over the years,
not only concurrent software programs have become a trend but also distributed programs
too (e.g., parallel computing, any kind of telecommunication software, network file systems,
etc) because of their advantages of being more performant than their sequential counterparts,
although at the cost of being harder to test; and the fact that most property-based testing tools
run sequentially (PropEr can do parallel testing but it only works in certain types of tests and
QuickCheck has an old driver that tries to expand it with parallel execution; however, no
Property-Based Testing tool has an officially included concurrent execution for all of their
runs), we thought that the execution times and performance had room for improvement by
expanding one to allow parallel and distributed execution.

1.2 Objectives

The main goal of this bachelor thesis is to design how to extend a property-based testing tool
to run tests in a parallel and distributed fashion, and to implement those changes in the tool
with as little as possible impact in the existing codebase.

The property-based testing tool we will expand and patch is PropEr, which not only was
inspired by QuickCheck, the original Property-Based Testing tool but is also along with it
the most powerful PBT tool to date. In addition, it is written in Erlang/OTP and is the most
used within the community of the language to run property-based tests. We chose this tool

2

CHAPTER 1. INTRODUCTION

as its popularity can help get feedback easily on the changes that will be done and because,
as previously stated, it is built upon Erlang, an open-source battle-tested functional program-
ming language (with a permissive license that allows us to work with it) for fault-tolerant and
distributed systems, so we intend to bring these characteristics to this powerful testing tool
to increase its power even more.

Hence, the objective of this project is to bring the aforementioned new features (parallel
and distributed execution) to the tool using one of the language’s strongest points: its ac-
tor model, which eases the job of writing concurrent software. Thanks to it and because of
how time-consuming running many property-based tests can be, the extension of the tool
will speedup the execution times of testing those properties by running them in parallel or
distributed.

Once this primary objective is achieved we will run in a cluster this patched version of
PropEr to validate and improve it, in addition to measuring the obtainable speedup when
running property-based tests of relevant projects (i.e., those used by the community), as some
can take too long (e.g., Scalable Process Groups (spg) [7]).

Finally, once this project’s work has been tested and proved working properly, the com-
mits with the changes will be Pull Requested from the fork [8] where they have been published
to the original repository [9], to allow the modifications to go upstream.

1.3 Methodology

This project’s work and development have been approached following a modified version of
the well-known Scrum methodology, adapted to a single-person environment as it is origi-
nally team-oriented. It is an agile methodology built upon the concept of sprints, which are
usually short iterations to be done within a fixed time period, allowing to develop of a product
in a series of incremental, more manageable, iterations that focus on certain aspects of the
product and that always deliver a working product at their end. This approach to managing
software development is also well-suited for situations of great uncertainty and risk, as it was
in this project.

As previously mentioned, although we used Scrum, some modifications were done to take
into account that instead of a team developing a solution, the agile methodology was being
used by a student and his two supervisors. Rather than having daily meetings, we had weekly
meetings where the objectives of each sprint and their progress were discussed. However,
as one of the supervisors was remote and he could not attend those meetings, those were
supplemented with being in constant communication with him, first by email and later on
through Skype calls and chats.

Some of the methods we used from Scrum to approach the work were setting up a to-

3

1.4. Work plan

do list and keeping track of it as the sprints progressed to change the priorities of the tasks
when deemed necessary, or beside the weekly meetings, having reviews of the progress and
objectives with one of the supervisors, who was none other than one of the original creators
of PropEr.

1.4 Work plan

For the purpose of realizing this project, we divided it into self-contained iterations, each of
them having its own gist to deal with. Those iterations are listed below and shown in 1.1:

• It 1. Study of the application and research its current architecture.

• It 2. Design an initial draft of a concurrent approach in Erlang.

• It 3. Locate the key components that should be changed or extended.

• It 4. Implementation of the parallel and distributed changes in the property-based
testing tool.

• It 5. Testing and validation of our work by running benchmarks of projects with
Property-Based Testing on both a cluster to test the distributed execution and in a pow-
erful computer with a high number of cores to test the parallel execution.

Figure 1.1: Iterations of the project

4

CHAPTER 1. INTRODUCTION

1.4.1 Project cost

As previously discussed, we followed the Scrum methodology with sprints of a defined du-
ration of two weeks. By taking into account that and also the average work done per sprint,
we have calculated the effort spent on each iteration, based on 1 hour/day averaged over 44
weeks, to be as follows:

Iteration Effort (hours)
It 1. Study and research of the tool 45
It 2. Design stage 70
It 3. Location of key components in the tool 25
It 4. Implementation of the design 165
It 5. Testing, validation and benchmarking 145
Total 450

Table 1.1: Breakdown by iteration of the effort of the project

The total effort of this project, therefore, is 450 hours. However, it is important to note that
the calculated effort is only from the student; the hours and effort from both supervisors have
yet to be calculated. Based on the weekly meetings we had during the project, and adding
a small bit more time to take into consideration any interaction that was not during said
meetings (i.e., Skype calls because of some questions, feedback, etc), each supervisor worked
in the project around 2.5 hours per iterations, which adds to 12.5 hours of total work each
supervisor through the iterations, or a total of 25 hours done by the two supervisors together
for the duration of the project.

Then, based on the average salary for a Software Engineer in Spain, and estimating the
hourly wage of each supervisor to be 60€/h, the cost of the student, both supervisors, and
therefore of the project can be calculated, and is shown in 1.2.

Resource Cost (€/h) Hours Total cost (€)
Student 25 450 11250

Supervisors 40 25 1000
12250

Table 1.2: Total cost of the project

As the rest of the tools used (e.g., Github, Travis CI) being free and because of both the
CITIC lending us access to the cluster of machines used in the project and the Uppsala Uni-
versity giving us a machine to test with too, the final budget of the project is 12250€.

5

1.5. Report layout

1.5 Report layout

The rest of this report is structured as follows:

• Chapter 2 - Background. In this chapter we will explain some notions and ideas
needed to comprehend certain parts or aspects of this project’s work.

• Chapter 3 - Development. In this chapter we will cover how we set off to research
the property-based testing tool to come up with a concurrent design for it and later
implement it.

• Chapter 4 - Testing and benchmarking. This chapter covers how we tested and
validated the aforementioned implementation, as well as the benchmarks of its new
execution times.

• Chapter 5 - Conclusions. In this chapter we present the conclusions reached, along
with possible future improvements that our work could benefit from.

6

Chapter 2

Background

In this chapter we will explain certain concepts and/or notions that the reader should know
about to get a proper understanding of our work, such as what is all this fuss about Erlang

and why it is an incredible language to write concurrent software and a quick introduction
into the world of Property-Based Testing.

2.1 Erlang/OTP

Erlang is a functional programming language, which means that as the rest of programming
languages based on the functional paradigm, its programs are structured as a set of, usually
pure, functions (i.e., functions that for a given input always return the same output), contrary
to the more commonly used imperative paradigm, where commands or instructions are used
to make up the programs. It was designed “from the bottom up to program concurrent, dis-
tributed, fault-tolerant, scalable, soft, real-time systems” [10] and developed by Ericsson; on
the other hand, OTP is a collection of design principles and Erlang libraries to help develop
these systems.

Some of Erlang features are that its data types (e.g., lists, functions, maps, strings, etc)
are immutable, variables can only be bound once (i.e., they cannot have their value changed
once assigned) and consequently, any function defined in an Erlang program, also known
as a module, will always produce a new copy of its output. It also makes use of the pattern

matching mechanism, which in Erlang occurs when evaluating any function call, receive, case,
try expressions and match operators (=) expressions, by matching the left-hand side of an
expression against its right-hand side; if the matching succeeds any unbound variables would
become bound and if it failed a runtime error would be generated.

An example of a module that prints to the standard output “Hello, World!” is shown in 2.1
to give the reader a quick glance of what a simple program in Erlang would look like.

7

2.1. Erlang/OTP

1 -module(hello_word).
2 -export([greet/0]).
3

4 greet() -> io:format("Hello, World!~n").

Listing 2.1: Example of a Hello World program in Erlang

Nonetheless, the biggest strength and perhaps peculiarity of the language is its concur-
rency model, as Erlang uses the Actor model [11], modeling each actor as an Erlang process.
These processes are not Operating System processes but rather are lightweight, fast to create
and terminate, and isolated between themselves (i.e., they do not share memory) processes
whose scheduling and mapping to actual OS processes are made very efficiently and transpar-
ently by Erlang’s Virtual Machine, the BEAM, which also handles the distribution of Erlang
itself across multiples machines through the use of nodes, of which we will talk about more
in the next chapter.

These processes are created by calling erlang:spawn/31 function and are able to
share information among themselves by sending messages. An example of a program that
uses processes and message passing is shown in 2.2.

1 -module(processes_example).
2 -export([start/0, add/3]).
3

4 add(X, Y, From) ->
5 N = X + Y,
6 From ! {addition, N, self()}.
7

8 start() ->
9 Pid = spawn(?MODULE, add, [40, 2, self()]),

10 receive
11 {addition, N, Pid} -> N == 42
12 end.

Listing 2.2: Example of a concurrent program in Erlang

For an easier understanding of the program, it has been broken down into its important
bits:

1. First, a function that adds two numbers and sends the result back to the PID of another
process, processes_example:add/3, is defined.

1In Erlang the number of arguments a function is passed to determines its arity. As functions are uniquely
defined by the combination of their module name, function name, and arity, they are usually denoted as
module_name:function_name/arity

8

CHAPTER 2. BACKGROUND

2. Then, a process that executes that function is spawned at line 10, in this case, to add 40
and 2 and send the result back to the caller of the program. The PID of the process is
assigned to the Pid variable.

3. Finally, the result is sent back at line 7 and received and asserted during lines 11-
13. We can be sure that it is the correct message as we pattern matched it against
{addition, N, Pid} and since the Pid variable was already bound to the PID
of the Erlang process that is executing the function, no other message will match except
the one that was sent from the spawned process.

Some further examples of components fromOTP that areworth highlighting are gen_servers,
generic server processes with standard interfaces, and supervisors, processes capable of su-
pervising and restarting if something goes wrong other child processes (which in turn can be
either a supervisor or any other kind of process).

2.2 Property-Based Testing

To highlight the value that Property-Based Testing brings to the world of software testing,
this section will start by summing up/talking about why software testing is important and
how it is usually done.

2.2.1 Unit Testing

The most common method of software testing is unit testing, where individual units or com-
ponents are validated by asserting whether for cherry-picked inputs the unit produces the
expected output. These units are can be functions, modules, etc. The problem that comes
with unit testing is

And so, if we wanted to test an Erlang program that reverses the order of a list, as shown
in 2.3.

1 -module(unit_testing_example).
2

3 reverse(L) -> reverse(L, []).
4

5 reverse([], Acc) -> Acc;
6 reverse([H|T], Acc) -> reverse(T, [H|Acc]).

Listing 2.3: Program that reverses the order of a list

One would write unit tests that for handpicked lists the developer decided to choose, the
program will return them in reverse order (2.4).

9

2.2. Property-Based Testing

1 -module(unit_testing_example).
2 -include_lib("eunit/include/eunit.hrl").
3

4 reverse(L) -> reverse(L, []).
5

6 reverse([], Acc) -> Acc;
7 reverse([H|T], Acc) -> reverse(T, [H|Acc]).
8

9 reverse_empty_list_test_() ->
10 ?_assert([] == reverse([])).
11

12 reverse_1_element_test_() ->
13 ?_assert([1] == reverse([1])).
14

15 reverse_2_elements_test_() ->
16 ?_assert([2, 1] == reverse([1, 2])).
17

18 reverse_3_elements_test_() ->
19 ?_assert([3, 2, 1] == reverse([1, 2, 3])).

Listing 2.4: Example of unit testing in Erlang

These unit tests, although grouped together into one function for this example, would be
counted individually when running them with Erlang’s unit testing framework, EUnit, and
display the following (2.5) output.

1 ======================== EUnit ========================
2 module 'unit_testing_example'
3 unit_testing_example:10: reverse_empty_list_test_...ok
4 unit_testing_example:13: reverse_1_element_test_...ok
5 unit_testing_example:16: reverse_2_elements_test_...ok
6 unit_testing_example:19: reverse_3_elements_test_...ok
7 [done in 0.012 s]
8 ===
9 All 4 tests passed.

Listing 2.5: Example of a successful EUnit invocation

This example also helps to present and visualize the inherent problem of unit testing: as
the test cases have to be cherry-picked, this not only becomes a time-consuming task, but also
a tiresome one to do. Furthermore, when writing a large number of test cases the chances
of making a mistake can only go up and, to boot, one cannot be positive that all these tests
demonstrate the correctness of the code.

10

CHAPTER 2. BACKGROUND

2.2.2 Property-Based Testing

This is where Property-Based Testing shines, as the idea behind this type of testing is a simple
one: once properties we want our software to satisfy have been specified, the property-based
testing tool of choice will automatically generate random inputs that test whether our soft-
ware satisfies these previously mentioned properties or not.

In addition, properties are not a complex concept, but rather a simple one, as they are
simply logical statements that capture the partial correctness of the code. Coming back to
the exampled used earlier to show what unit testing is about, one initial property2 we could
think of our reversing program should satisfy is that the reverse of a reversed list should be
equal to the original list (2.2.2).

1 ?FORALL(L, list(integer()), L == reverse(reverse(L))).

Or in other words, for all lists of integers L, the reverse of its reverse order should be equal
to itself. Nonetheless, we will break down this property so that the reader can understand
what is happening when writing such line:

• When using PropEr, properties are checked by invoking the?FORALL/3macro3. This
macro expects the following arguments, and in this particular order:

1. The variable(s) where the values produced by the generator (i.e., the second argu-
ment) will be bound.

2. The type generator to use when producing values for the variable(s).

3. A boolean expression, be it either an already defined function or a definition of
one, that must return true when the property holds and false otherwise.

To sum it up, a property is no other thing than a combination of a list of variables to use
when writing it, a type generator to produce values for them, and an expression using those
variables to check whether the property holds or not.

This approach on how tests are defined shifts the focus of the developers and/or testers
from thinking about test cases and their expected output to finding the properties for the
software, which yields a deeper understanding of the software’s behaviour and also works as
a specification of it.

2Whilst we haven’t covered yet PropEr itself, any examples of Property-Based Testing will be done with it, so
this example has its syntax.

3A macro definition in Erlang can either be a constant or a function definition, which is expanded at compila-
tion time.

11

2.3. PropEr

2.3 PropEr

PropEr (PROPerty-based testing tool for ERlang) is the only existing property-based testing
tool for Erlang with a free license that is still maintained. It was inspired by QuickCheck, the
first property-based testing tool, and along with it, it’s the most powerful tool to date. It was
developed byManolis Papadakis [12] (whomainly wrote the base system), Eirini Arvaniti [13]
(who wrote the stateful code subsystem) and Kostis Sagonas, and has a long list of features,
among them:

• It has two extra libraries to help deal with stateful code and its properties (i.e., properties
that have to take into account that the code will not always return the same output, as
it has state, and should be tested accordingly).

• As it is tightly integrated with Erlang’s type language, the tool is able to:

– Use custom-defined types as generators instead of using PropEr’s built-in ones.

– Test functions automatically based on their specs4 alone.

• Automatically shrink the input of a property that did not hold to the actual minimal
input that would make it fail.

• It can narrow down the generated inputs so they are more relevant to the property
when doing Targeted Property-Based Testing.

More information regarding the features the tool has or about other macros that have not
been mentioned, as well as use cases, can be found in the tool’s official documentation [14].

Continuing with our example of unit testing the Erlang program that reverses a list from
2.4, we will instead use PropEr with the previously shown property (2.2.2) to demonstrate
why and how Property-Based Testing is better. The code of the module with the property
defined is shown in 2.6.

1 -module(proper_testing_example).
2 -include_lib("proper/include/proper.hrl").
3

4 reverse(L) -> reverse(L, []).
5 reverse([], Acc) -> Acc;
6 reverse([H|T], Acc) -> reverse(T, [H|Acc]).
7

8 prop_reverse() ->
9 ?FORALL(L, list(integer()), L == reverse(reverse(L))).

Listing 2.6: Example of property-based testing in Erlang

4Erlang’s type language comes with a notation for declaring sets of Erlang terms to form a particular type and
a specification system for functions based on these types and the built-in ones.

12

CHAPTER 2. BACKGROUND

To start with, doing Property-Based Testing reduces the visual cluttering found of having
a large number of unit tests, as the property to test whether the reverse function works is just
one line long. Next, some of the best features from PropEr can only be seen when executed5,
so we will show a successful execution (2.7) of it, and then we will change the property to a
wrong one in order to demonstrate how PropEr behaves (2.8). Finally, we will add another
property to further show how simple is to test with PropEr even in modules with multiple
properties (2.9, 2.10).

Invoking PropEr is as simple as calling proper:quickcheck/1 with the property
function we want to test.

1 1> proper:quickcheck(proper_testing_example:prop_reverse()).
2 ...
3
4 OK: Passed 100 test(s).

Listing 2.7: Example of a successful PropEr invocation

During its execution, PropEr will display a dot (.) for each passed test of the property.
But what happens when PropEr finds that a property does not hold? In order to see that, we
will change the old property (2.2.2) to a wrong one where we believe that the reverse of a list
should be equal to the list itself, as shown in 2.3.

1 ?FORALL(L, list(integer()), L == reverse(L)).

If we call PropEr again, we will see fail, as shown in 2.8.

1 1> proper:quickcheck(proper_testing_example:prop_reverse()).
2 ...!
3 Failed: After 4 test(s).
4 [-1,1]
5

6 Shrinking .(1 time(s))
7 [0,1]

Listing 2.8: Example of a failed PropEr invocation

What is interesting from this output, though, is that the moment PropEr found a failing
case not only does it display it, but also it goes even further and by shrinking the input it was
able to find the smallest possible input that would make the property not hold!

Now let us add two new properties and see how one can test a module that has multiple
properties. To demonstrate this, the first property will check whether the reversed list has the
same length as the original list or not, whereas the second property will check whether the

5PropEr can be executed two ways: one is to do it from inside Erlang’s interactive shell [15] and the other is
using rebar3 proper plugin [16, 17]. We will be doing all our examples using the former for the sake of consistency.

13

2.3. PropEr

reversed list and the original list are equal once both have been sorted. These new properties
are shown in the final revision of the example module (2.9).

1 -module(proper_testing_example).
2 -include_lib("proper/include/proper.hrl").
3

4 reverse(L) -> reverse(L, []).
5

6 reverse([], Acc) -> Acc;
7 reverse([H|T], Acc) -> reverse(T, [H|Acc]).
8

9 prop_reverse() ->
10 ?FORALL(L, list(integer()), L =:= reverse(reverse(L))).
11

12 prop_length() ->
13 ?FORALL(L, list(integer()), length(L) =:= length(reverse(L))).
14

15 prop_sort() ->
16 ?FORALL(L, list(integer()),
17 lists:sort(L) =:= lists:sort(reverse(L))).

Listing 2.9: Example of property-based testing in Erlang

This time, instead of quickchecking each property, we will use a function of PropEr that
does that for us for every property found in a module, proper:module/1 (2.10).

1 1> proper:module(proper_testing_example).
2 Testing proper_testing_example:prop_reverse/0
3 ...
4
5 OK: Passed 100 test(s).
6

7 Testing proper_testing_example:prop_length/0
8 ...
9

10 OK: Passed 100 test(s).
11

12 Testing proper_testing_example:prop_sort/0
13 ...
14
15 OK: Passed 100 test(s).

Listing 2.10: Example of calling proper:module/1

Now, it can be noted from comparing the output of EUnit with the output of PropEr, that
one thing the former does that the latter does not is showing how long it took to run the test
suite. Sure, one could measure the time that takes running all the properties in the modules

14

CHAPTER 2. BACKGROUND

and it will be quite fast, but the point to be made here is that even though each property could
be run independently of the others, PropEr runs them sequentially. Furthermore, even EUnit
allows executing tests in parallel, but, alas, PropEr has a limited scope of parallel execution
to only stateful properties. Hence, this thesis work.

2.3.1 Stateless vs. stateful properties

The reader might have noticed that, although stateful properties have been mentioned twice,
we have yet to discuss them further, instead of simply name-dropping them. This short sub-
section will serve as an introduction to the concept of stateful properties, due to them being a
key point of the design (3.1) and implementation (3.3) that will be discussed in the following
chapter.

Stateful properties are those that test stateful systems, which are programs that are not
purely functional6 and have side-effects; in short, programs with state. Thus, the Erlang pro-
gram example we have been using up to this point is a stateless one and its properties, shown
earlier, have been stateless properties.

Akin to a stateless property, a stateful one has its own three main components: the system
to test, a model representing what the system does, and a generator for commands to repre-
sent the execution flow of the system. With these three pieces, PropEr is able to test stateful
codebases using state machines that have their state changed with the aforementioned gen-
erated commands while checking whether a series of preconditions and postconditions are
satisfied for that command or not.

As adding an example of Stateful Property-Based Testing to this report and explaining it
would take too many pages, we will instead point the reader to a great example of Stateful
Property-Based Testing from the official website of the tool [18].

6Remember, pure functions are those that always produce the same output for a given input.

15

2.3. PropEr

16

Chapter 3

Development

In this chapter we will talk about the initial design stage, how we approached PropEr and
found the right places to make these improvements, and later implement them, and what

challenges that brought and how we overcame them.

3.1 Design

One of the main goals we wanted to achieve during the design phase was to think of a simple
yet efficient way of making the property-based testing tool work concurrently while having
little impact on the existing codebase (i.e., changing as little code as possible). In order to do
so in a feasible fashion, we had to take into account the following issues:

1. PropEr is able to deal with stateless and stateful testing. Since the latter is usually found
in Erlang code in the form of gen_servers1 and they can have unique identifiers for a
single node2, we needed to be able to ascertain whether a property was stateless or
stateful before running its tests so that we could prepare in case of having to isolate the
stateful ones among themselves.

2. If we make concurrent software, the chances of something going wrong increment. In
the event of an error, we did not want to crash the whole Virtual Machine and therefore
the runtime system running the property-based testing tool.

3. We also wanted to extend PropEr with both parallel and distributed execution, so we
needed a practical form of doing so without having to duplicate code. Ideally, the dis-
tributed execution would be merely having to run the code in parallel but in a dis-
tributed fashion, not its own implementation.

1A gen_server is an Erlang process used to keep state, execute code asynchronously, etc, through the use of a
standard set of functions.

2A node is an executing Erlang runtime system that has been named.

17

3.1. Design

As a result of raising these concerns early during the Design stage, we had time to think
about them more carefully and come up with better ideas. We will discuss next the proposal
we ended up coming with to solve these issues and which are its key points.

3.1.1 Proposed design

Themost important facet is howwe thought and designed the concurrency wewanted PropEr
to have. We could have used a gen_server to handle performing the tests asynchronously and
any error that could happen because of them, but as we have already mentioned this was
not a valid solution as we did not like the idea of imposing on the users of PropEr not to
use any process or gen_servers with the same unique identifier as ours (in short, we did not
want to keep a name identifier for ourselves), and not having the imposition in the first place
would mean that we could end up clashing with registered processes in codebases that had
not looked into the source code of PropEr to notice the problem. Furthermore, even if we
went along with the gen_server option, we would end up having to coordinate several of
them when testing stateful properties (as we already discussed, stateful properties tests have
to be cut off from each other).

Because of this and the fact that we could not add more dependencies to the project (and
therefore use third-party libraries) to help with this issue, what we ended up doing was work-
ing with the simplest concepts to do concurrent software in Erlang: spawning processes and
message passing.

Originally, PropEr would execute a number of tests (by default 100) sequentially for each
property, stopping only in the case of an error or a failed test and continuing otherwise. Our
design proposes the following changes to the property-based testing tool:

• PropEr should spawn as many processes as the user specifies (from hereon they will
be referred to as workers), assign to each of them a portion of the total of tests to run
(more on this will be discussed later in 3.1.2 and in the Implementation section in 3.3.5),
have the workers perform each their share in parallel and simply wait for all workers
to finish testing before reporting the aggregated result.

• To solve the issue number 2, we settled on starting a dedicated node where the workers
should be spawned thereafter. That way, in the case of a worker crash, only that node
would crash. This idea was taken from Nifty [19], another project from one of the
thesis supervisors, who insisted on having the concurrent model be as fault-tolerant as
possible.

• In consequence of the previous point, and in order to address the issue number 1, the
number of dedicated nodes that will be started will vary according to the type of prop-
erty to test. Thus, stateless properties will spawn their workers on a single dedicated

18

CHAPTER 3. DEVELOPMENT

node started beforehand, whereas stateful properties will start as many nodes as work-
ers will be created, and spawn those workers each in their own node, so that they are
isolated them among themselves and to avoid any possible clash that otherwise could
happen when testing stateful properties in a single node.

• Finally, we addressed the issue number 3 with these design decisions. With them, run-
ning PropEr in a distributed fashion means that we only need to know the machine
where the node(s) and workers should be started and spawned, or a list of already
started node(s) in other machines where the workers will be created.

3.1.2 Test distribution among workers

Because of the fact that we have to divide the workload among multiple workers, there was
the need to think of a way of doing such distribution correctly, whilst taking into account
that, as previously stated, PropEr generates random increasing inputs as the tests pass.

Even distribution

For example, a simple approach that one might think of is to just split the total number of
tests evenly among the workers.

Figure 3.1: Even distribution of tests among the workers

The problem that this strategy entails is that, although there is an even distribution of the
tests among the workers (as shown in 3.1), their actual load will be uneven — the last workers
will run tests of larger size.

As we did not want to end up with an unbalanced workload among the workers, we
devised three other different strategies, or approaches, to split the tests and give each worker
their corresponding share.

19

3.1. Design

Uneven distribution

This strategy is the least different in concept from the first one introduced. It aims to fix
the unbalanced workload problem the even distribution had by splitting the tests unevenly
among the workers in such a way that takes into account that the last tests are of larger size
and offsets this by giving more tests to the first workers (3.2).

Figure 3.2: Uneven distribution of tests among the workers

Batches distribution

One approach to keep the workload as balanced as possible is to produce batches of tests and
send them to the workers during a certain number of rounds. For instance, if PropEr is to run
N tests, with this approach the first batch would be made up of N/k tests, which then would
be split evenly among the workers into their respective shares (N/kn) — if no test fails, the
next batch should be sent to all workers; this should be continued for k rounds (3.3).

Figure 3.3: Batches distribution of tests among the workers

N th sequence distribution

The last of the strategies we thought of is one that benefits from being an “embarrassingly
parallel” one: instead of doing a single sequence of tests (i.e., having to run 100 tests is the

20

CHAPTER 3. DEVELOPMENT

same as doing a series of tests, starting at 0 and ending at 99), each worker only needs to
run their own succession of test that is made up of selecting every N th test of the original
sequence (3.4).

Figure 3.4: N th sequence distribution of tests among the workers

Since we wanted PropEr to have the best of the described approaches, for us to be able to
determine which one was a better option we decided to implement all of the four strategies
and benchmark their performance, but that will be discussed later in 3.3.5.

3.2 A PropEr study

In order to carry out the design we had in mind, there was the need to study thoroughly
the tool in search of the key places where it would be feasible to start tinkering with. To do
this, we first got the code from the original repository [9] and started researching it after we
thought of a strategy to speed up this process: the quickest way to understand what code was
of more importance was to execute PropEr in different environments and look at its control
flow (i.e., the order in which the functions were being called).

And so, we set out to get as much information as possible in the shortest amount of time.
To do so, we initially used one of the tools for tracing and investigating distributed systems
that are included in Erlang’s Observer application, the Trace Tool Builder. This tool allows
tracing applications during their runtime and, thanks to it, we were able to get a first glimpse
into how the control flow if PropEr looked like, as shown in 3.5.

As we also needed to understand the tool and its code, we approached it by first reading its
API documentation [14], where we discovered which module acted as the central component
of the system, and we simply inspected those module’s exported functions3 (3.1) and started
off reading from those functions more exhaustively and in-depth.

3In Erlang, only the exported functions are visible from outside that module. In other words, exported func-
tions act as a public API of their module.

21

3.2. A PropEr study

Figure 3.5: Tracing visualized using the Event Tracer

22

CHAPTER 3. DEVELOPMENT

Figure 3.6: Exported definitions (i.e., functions and types) of the tool’s main module

1 -module(proper).
2

3 -export([quickcheck/1, quickcheck/2, counterexample/1,
4 counterexample/2, check/2, check/3, module/1, module/2,
5 check_spec/1, check_spec/2, check_specs/1, check_specs/2]).
6 -export([numtests/2, fails/1, on_output/2, conjunction/1]).
7 -export([collect/2, collect/3, aggregate/2, aggregate/3,

classify/3, measure/3,
8 with_title/1, equals/2]).
9 -export([counterexample/0, counterexamples/0]).

10 -export([clean_garbage/0, global_state_erase/0]).
11 -export([test_to_outer_test/1]).
12 -export([gen_and_print_samples/3]).
13 -export([get_size/1, global_state_init_size/1,
14 global_state_init_size_seed/2, report_error/2]).
15 -export([pure_check/1, pure_check/2]).
16 -export([forall/2, targeted/2, exists/3, implies/2,
17 whenfail/2, trapexit/1, timeout/2, setup/2]).
18 -export_type([test/0, outer_test/0, counterexample/0, exception/0,
19 false_positive_mfas/0, setup_opts/0]).

Listing 3.1: Exported definitions (i.e., functions and types) of the tool’s main module

23

3.2. A PropEr study

From the list of exported functions is shown in 3.6, the most important functions listed are
quickcheck/1,2 and module/1,2, with the former being the entry point to PropEr
when calling a?FORALL/3 propertymacro, and the latter a function that invokes the former
for each property that exists in a given module. It can be noted that both functions have an
analogous version that instead has arity 2, those also take as their second argument a list of
user-defined options, if present; as they end up converging with their matching function, it
does not matter which of the two arities we decide to pick as our starting point.

For an easier comparison of the tool’s control flow, before (3.7) and after (3.8) the design
was implemented, the annotated sequence diagrams are shown one after the other.

As seen in the old one, the most interesting key points of PropEr to start redesigning with
concurrency in mind were proper:inner_test/2 and proper:perform/3. The
former is the last function to be executed before performing the tests and the one to report
the result gotten from them; whereas the latter is the main function related to the execution
of the tests, counting how many tests have been done and are left to do, if a test needs to be
tried again, etc. Their code is shown in 3.2 and 3.3, respectively.

1 inner_test(RawTest, Opts) ->
2 %% Get the relevant user (or default) options
3 #opts{numtests = NumTests, long_result = Long,
4 output_fun = Print} = Opts,
5 %% Get the test to run
6 Test = cook_test(RawTest, Opts),
7 %% Perform it and get the results
8 ImmResult = perform(NumTests, Test, Opts),
9 Print("~n", []),

10 %% Report them
11 report_imm_result(ImmResult, Opts),
12 {ShortResult,LongResult} = get_result(ImmResult, Test, Opts),
13 case Long of
14 true -> LongResult;
15 false -> ShortResult
16 end.

Listing 3.2: Code of original proper:inner_test/2

24

CHAPTER 3. DEVELOPMENT

Figure 3.7: Control flow of the tool originally

25

3.2. A PropEr study

Figure 3.8: Control flow of the tool after implementing the design

26

CHAPTER 3. DEVELOPMENT

1 perform(NumTests, Test, Opts) ->
2 perform(0, NumTests, ?MAX_TRIES_FACTOR * NumTests, Test, none,
3 none, Opts).
4

5 %% No retries left for a test, base case
6 perform(Passed, _ToPass, 0, _Test, Samples, Printers, _Opts) ->
7 case Passed of
8 0 -> {error, cant_satisfy};
9 _ -> #pass{samples = Samples, printers = Printers,

10 performed = Passed, actions = []}
11 end;
12 %% All tests have passed, base case
13 perform(ToPass, ToPass, _TriesLeft, _Test, Samples, Printers,
14 _Opts) ->
15 #pass{samples = Samples, printers = Printers,
16 performed = ToPass, actions = []};
17 %% Recursive case
18 perform(Passed, ToPass, TriesLeft, Test, Samples, Printers,
19 #opts{output_fun = Print} = Opts) ->
20 case run(Test, Opts) of
21 %% Test passed, do another one
22 #pass{reason = true_prop, ...} ->
23 perform(Passed + 1, ToPass, TriesLeft - 1,
24 Test, ..., Opts);
25 %% Test failed, stop and return the fail
26 #fail{} = FailResult ->
27 FailResult#fail{performed = Passed + 1};
28 %% Test was rejected, try again
29 {error, rejected} ->
30 perform(Passed, ToPass, TriesLeft - 1, Test,
31 Samples, Printers, Opts);
32 %% From hereon, return the error from running the test
33 {error, Reason} = Error when Reason =:= arity_limit
34 orelse Reason =:= non_boolean_result
35 orelse Reason =:= type_mismatch ->
36 Error;
37 {error, {cant_generate,_MFAs}} = Error ->
38 Error;
39 {error, {typeserver,_SubReason}} = Error ->
40 Error;
41 Other ->
42 {error, {unexpected,Other}}
43 end.

Listing 3.3: Simplified code of original proper:perform/3

27

3.3. Implementation

Most of the code of proper:perform/3,4 has been simplified, as the internal work-
ings of the function are not that relevant to making the property-based testing tool concurrent
or fitting for this report; in short, we only care about the results obtained from running a test.

At first, our idea was to make proper:perform/3,4 concurrent, but in order for
this to be feasible, we would have to create as many processes as tests are to be ran. In one
of the discussions on this topic with Kostis, he suggested to start redesigning from the other
previouslymentioned function, proper:inner_test/2, as at that level of codewe have
more control over the way the tests are executed.

3.3 Implementation

The final revision of our work can be found in a fork of the original project (both on Github)
at the following link:

https://github.com/pablocostass/proper

3.3.1 Preamble

In this section, we will talk about how we implemented the previously discussed design to
extend the property-based testing tool, PropEr, with parallel and distributed execution while
maintaining the existing functionality of the tool and following the best coding practices, such
as Test-Driven Development and type checking of functions, besides following the directions
of one of the tool’s creators and maintainers.

Some of the points of the implementation will not be explained thoroughly as this report
has a maximum length allowed andmany concepts from Erlang and from the tool itself should
be known beforehand in order to have a proper understanding of all the code, if it were not
to be shown simplified or highlighted in snippets.

3.3.2 Project structure

As this is a fork, it has to follow the same license as the original repository does (GPL-3.0 [20])
and an equal project structure, which is shown in 3.4

1 $ tree -d
2 .
3 ├── doc
4 ├── examples
5 ├── examples_test
6 ├── include
7 ├── scripts
8 ├── src
9 └── test

28

https://github.com/pablocostass/proper

CHAPTER 3. DEVELOPMENT

10

11 7 directories

Listing 3.4: Directory structure of the tool

The project structure follows Erlang’s Directory Structure Guidelines for a Development

Environment [21]. As specified in those guidelines the project has the following directories,
some of which are required and some are optional:

• doc (optional). Contains the documentation of the tool.

• include (optional). Contains public code that should be available in other applica-
tions, such as the macro definitions of the tool (e.g., ?FORALL/3).

• src (required). Contains the Erlang source code of the tool itself.

• test (optional). Contains the files regarding the tests of the tool.

The other two directories that have not been listed above,examples andexamples_test,
are exclusive of this project and not related to the aforementioned guidelines. The former con-
tains files with examples of properties and the latter has a test suite to run them.

Furthermore, the project also has a few files that can be found on the top-level directory
that are related to building and testing utilities for the project: a configuration file for re-
bar3 [16], the most widely adopted building tool in the Erlang community and a Makefile to
help compile, run type checking on the code and test the property-based tool itself using the
aforementioned building tool.

3.3.3 A PropEr implementation

We set off the implementation stage with the goal of first achieving a parallel execution of
the tool and then further expand it with a distributed execution. Since the tool has received a
lot of support and feedback from the community and its creators and maintainers throughout
the years, one of the advantages our work has over other more traditional bachelor’s thesis is
that we have most of the groundwork already laid for us and we can make use of it to speed
up some tasks.

As we already discussed in the Design section (3.1), to make PropEr into a concurrent tool
we needed to change its control flow from proper:inner_test/2 onwards. To help
the reader properly perceive the changes that we have done, we will walk again through how
the tool used to work (although this time faster) and why that function is important.

Properties are defined with PropEr’s ?FORALL/3 macro (3.5)

29

3.3. Implementation

1 -define(FORALL(X,RawType,Prop),
2 proper:forall(RawType, fun(X) -> Prop end)).

Listing 3.5: Definition of the FORALL/3 macro

and they are parsed by the property-based testing tool either by calling
proper:quickcheck/1,2 when one wants to test one specific property or
proper:module/1,2 when one wants to test all properties found inside a mod-
ule. Given that the latter calls the former for each property found in the module, and since
both functions end up converging at some point in the tool’s control flow, we will skip the
code of proper:module/1,2 as it is a bit more complex and redundant for the purpose
of this section.

The usual entry point to the tool’s functionality is, as previously stated, one of the two
functions. They both accept a list of user-defined options that will be used to either override
the default values the tool has (e.g., the default number of tests to be run is 100, but if one
wants to instead do a thousand tests that can be changed with the {numtests,1000} option)
or to add some that change how the tool behaves (e.g., if one wishes to not see a dot for
every passed test or an exclamation mark with failed ones; in short, the output of running
the tests, and only cares about the final result the quiet option can be added; or when there
is no need to shrink on the failing cases the noshrink option can be used). The code for
proper:quickcheck/1 and proper:quickcheck/2 is shown in 3.6 to illustrate
how this entry point works.

1 %% @doc Runs PropEr on the property `OuterTest'.
2 -spec quickcheck(outer_test()) -> result().
3 quickcheck(OuterTest) -> quickcheck(OuterTest, []).
4

5 %% @doc Same as {@link quickcheck/1}, but also accepts a list of
options.

6 -spec quickcheck(outer_test(), user_opts()) -> result().
7 quickcheck(OuterTest, UserOpts) ->
8 try parse_opts(UserOpts) of
9 ImmOpts ->

10 {Test,Opts} = peel_test(OuterTest, ImmOpts),
11 test({test,Test}, Opts)
12 catch
13 throw:{Err,_Opt} = Reason when Err =:= erroneous_option;
14 Err =:= unrecognized_option ->
15 report_error(Reason, fun io:format/2),
16 {error, Reason}
17 end.

Listing 3.6: Code of proper:quickcheck/1,2

30

CHAPTER 3. DEVELOPMENT

The functionwith arity 1 assumes that the user-defined list of options is empty and calls its
analogous function of arity 2. None of this function’s code is of real significance whatsoever,
since it is quite trivial if one were to simplify the functions it invokes within its body: at line
9 the tool tries to parse the aforementioned user-defined list of options and:

• If the parsing goes well and the list is valid, the tool then gets the property that needs
to be tested at line 11 and goes on to prepare to test it in the following line.

• If, however, the list of options could not be parsed, the tool will throw an error and
report the user of the failure.

The last function to be called on a successful parse, proper:test/2, is a setup func-
tion where the tool’s internal values needed for testing are initialized before running the tests
and erased afterward, as shown in 3.7.

1 -spec test(raw_test(), opts()) -> result().
2 test(RawTest, Opts) ->
3 %% Initialize the state of the tool
4 global_state_init(Opts),
5 %% Set up the test
6 Finalizers = setup_test(Opts),
7 Result = inner_test(RawTest, Opts),
8 %% Clean the test
9 ok = finalize_test(Finalizers),

10 %% Erase the state of the tool
11 global_state_erase(),
12 Result.

Listing 3.7: Code of proper:test/2

Finally, we have gotten to proper:inner_test/2 at line 5; at last, we know where
it is called during the tool’s control flow! It is also worth noting that, from what has been
shown throughout the past code listings, not that much code has been executed to get to this
point. Now, we can start explaining the changes done to the tool without worrying the reader
might feel that we have missed out something while illustrating what the tool has done till
this point of execution.4

As we discussed earlier3.1, our proposal had four key changes needed to make the
property-based testing tool into a concurrent one:

• It has to use processes to run multiple tests at the same time.

• It should use dedicated nodes to improve the fault-tolerance in the case of an unexpected
error or crash.

4For an easier comparison and to help the reader recall the details of how the function used to be, it was shown
in 3.2.

31

3.3. Implementation

• The number of said nodes should depend on the type of property to test (stateless vs.
stateful).

• The distributed execution should just carry out the parallel one but on a cluster of well-
known beforehand machines or nodes.

We will now show and explain how we addressed all these four key points with both the
modifications that were carried out in the established code (i.e., already shown) and the newly
implemented functions needed to make the concurrent design work.

The tool manages all the information it needs of a property that is about to test, or in the
middle of testing, through a combination of the boolean function that represents the property
and, mainly, a record of the options to use during its testing. For us to integrate our design
easily into the tool as it was, we decided tomodify said record definition to add two new fields,
num_workers and parent; the former to handle the number of processes or workers to make
use of and the latter to store the PID of the main process that will take care of aggregating
the results obtained from the workers. This newly updated record definition is shown in 3.8.

1 -record(opts, {
2 output_fun = fun io:format/2 :: output_fun(),
3 long_result = false :: boolean(),
4 numtests = 100 :: pos_integer(),
5 search_steps = 1000 :: pos_integer(),
6 search_strategy = proper_sa :: proper_target:strategy(),
7 start_size = 1 :: proper_gen:size(),
8 seed = os:timestamp() :: proper_gen:seed(),
9 max_size = 42 :: proper_gen:size(),

10 max_shrinks = 500 :: non_neg_integer(),
11 noshrink = false :: boolean(),
12 constraint_tries = 50 :: pos_integer(),
13 expect_fail = false :: boolean(),
14 any_type :: {'type', proper_types:type()} | 'undefined',
15 spec_timeout = infinity :: timeout(),
16 skip_mfas = [] :: [mfa()],
17 false_positive_mfas :: false_positive_mfas(),
18 setup_funs = [] :: [setup_fun()],
19 num_workers = 1 :: non_neg_integer(),
20 parent = self() :: pid(),
21 nocolors = false :: boolean()
22 }).
23 -type opts() :: #opts{}.

Listing 3.8: Type definition of proper:opts() record

Then, as proper:inner_test/2 uses that record to get certain bits of information,
like the number of tests to run, how to print the output obtained, etc; we decided to modify

32

CHAPTER 3. DEVELOPMENT

it to check whether the number of workers is not zero, and therefore is going to be executed
concurrently, or is indeed zero and should be executed as usual. The modified code is shown
in 3.9.

1 -spec inner_test(raw_test(), opts()) -> result().
2 inner_test(RawTest, Opts) ->
3 #opts{numtests = NumTests, long_result = Long,
4 output_fun = Print, num_workers = NumWorkers} = Opts,
5 Test = cook_test(RawTest, Opts),
6 ImmResult = case NumWorkers > 0 of
7 %% Non-zero number of workers, perform concurrently
8 true ->
9 case NumWorkers > NumTests of

10 %% Weird case of having more workers than tests.
11 %% Use only NumTests workers in this situation.
12 true ->
13 perform_with_nodes(Test,
14 Opts#opts{num_workers = NumTests});
15 %% Use the specified number of workers.
16 false -> perform_with_nodes(Test, Opts)
17 end;
18 %% 0 is the default value, perform as usual.
19 false -> perform(NumTests, Test, Opts)
20 end,
21 Print("~n", []),
22 report_imm_result(ImmResult, Opts),
23 {ShortResult,LongResult} = get_result(ImmResult, Test, Opts),
24 case Long of
25 true -> LongResult;
26 false -> ShortResult
27 end.

Listing 3.9: Code of proper:inner_test/2 with the modifications applied

This function goes hand in hand with a new one that handles everything re-
lated to setting up the dedicated nodes, splitting the tests among the workers, and
stopping the nodes at the end when running the tool in a concurrent fashion,
proper:perform_with_nodes/2 (3.10).

1 -spec perform_with_nodes(test(), opts()) -> imm_result().
2 perform_with_nodes(Test, #opts{numtests = NumTests,
3 num_workers = NumWorkers} = Opts) ->
4 %% Split the tests among the workers
5 TestsPerWorker = tests_per_worker(NumTests, NumWorkers),
6 NodeList =
7 case property_type(Test) of
8 {kind, Type} when Type =:= constructed; Type =:= wrapper ->

33

3.3. Implementation

9 %% Stateful property. Start as many nodes as workers are
10 Nodes = start_nodes(NumWorkers),
11 ensure_code_loaded(Nodes),
12 lists:zip(Nodes, TestsPerWorker);
13 _ ->
14 % Stateless property. Start a single node
15 [Node] = start_nodes(1),
16 ensure_code_loaded([Node]),
17 lists:map(fun(N) -> {Node, N} end, TestsPerWorker)
18 end,
19 %% Disable displaying log erros to the standard output
20 ok = ?disable_logging(),
21 %% Handle maybe starting the coverage tool of Erlang
22 {ok, _} = maybe_start_cover_server(NodeList),
23 SpawnFun = fun({Node, {Start, ToPass}}) ->
24 spawn_link_migrate(Node,
25 fun() -> perform(Start, ToPass, Test, Opts) end)
26 end,
27 %% Create the workers
28 WorkerList = lists:map(SpawnFun, NodeList),
29 InitialResult = #pass{samples = [], printers = [],
30 actions = []},
31 %% Wait for the results to be aggregated
32 AggregatedImmResult = aggregate_imm_result(WorkerList,
33 InitialResult),
34 %% Handle maybe stopping the coverage tool of Erlang
35 ok = maybe_stop_cover_server(NodeList),
36 %% Stop the dedicated nodes
37 ok = stop_nodes(),
38 %% Return the aggregated results
39 AggregatedImmResult.

Listing 3.10: Code of proper:perform_with_nodes/2

In those 37 lines of code, a lot of things are happening, so we will break this function
down into smaller chunks of its logic, highlighting the most important ones that made the
concurrency possible.

1. At line 5 the tests are distributed among the workers. This is done following one of the
previously mentioned strategies (3.3.5).

2. A different number of dedicated nodes are started with proper:start_nodes/1
(either at line 11 or 16). That function simply starts as many nodes as needed calling
the following function:

34

CHAPTER 3. DEVELOPMENT

1 -spec start_node(node()) -> node().
2 start_node(SlaveName) ->
3 %% Ensure the Erlang Port Mapper Daemon is started
4 [] = os:cmd("epmd -daemon"),
5 HostName = list_to_atom(net_adm:localhost()),
6 %% Start the main node, needed to start the other node(s)
7 _ = net_kernel:start([proper_master, shortnames]),
8 %% Start the worker node
9 case slave:start_link(HostName, SlaveName) of

10 {ok, Node} -> Node;
11 {error, {already_running, Node}} -> Node
12 end.
13

Listing 3.11: Code of proper:start_node/1

As a result of nodes in Erlang being runtime systems, we have to also ensure the rele-
vant code is loaded after the nodes have been started, or otherwise we will not be able
to spawn workers in them as they will not be able to execute the functions from the
modules being tested. That is done with the proper:ensure_code_loaded/1
function.

1 -spec ensure_code_loaded([node()]) -> 'ok'.
2 ensure_code_loaded(Nodes) ->
3 %% Get all the files that need to be loaded from the current

directory
4 Files = filelib:wildcard("**/*.beam"),
5 Modules =
6 [erlang:list_to_atom(filename:basename(File, ".beam"))
7 || File <- Files],
8 %% Call the functions that ensure all modules are available on

the nodes
9 [maybe_load_binary(Nodes, Module) || Module <- Modules],

10 [rpc:multicall(Nodes, code, add_patha, [Path])
11 || Path <- code:get_path()]
12 _ = rpc:multicall(Nodes, code, ensure_modules_loaded,
13 [Modules]),
14 ok.
15

Listing 3.12: Code of proper:ensure_code_loaded/1

3. After the workers have been spawned, the main process of the tool has to start
aggregating the results sent back from each worker, which is done by calling

35

3.3. Implementation

proper:aggregate_imm_result/2. This function relies on pattern match-

ing the message passing specified in the workers to combine those individual results
into one that has the format expected by the tool when reporting it.

4. Finally, the nodes are stopped when proper:stop_nodes() is called, which uses
functions already defined in Erlang to stop each node.

3.3.4 Problems faced during the Implementation stage

We thought it would be of significance to discuss some of the issues and/or technical chal-
lenges we faced while implementing the design in the property-based testing tool, as some
of them amounted to quite a lot of effort into finding their solution or fix and are worth a
mention.

The biggest problem we had to face was properly setting up the dedicated node(s) where
the workers are going to be spawned. When Erlang runs a program or its interactive shell is
started, what is happening behind the scenes is that an Erlang node is booted up, although
locally and hidden by default, which runs the ERTS. For an ERTS to work in a distributed
fashion it first has to start a named node, as those are the only ones that can communicate
with other nodes. Thankfully, as nodes are a key point in making distributed applications in
Erlang, the programming language has built-in functions that help manage distributed appli-
cations (as shown in 3.11) and even modules in OTP to easily create and use leader/follower

architectures in our programs.
However, for one to be able to smoothly use nodes certain criteria has to be met:

1. The nodes cannot differ in their Erlang version, as the distribution mechanism is not
backward compatible. There is, however, an option that enables the compatibility mode
so that nodes that are within two releases (e.g., Erlang/OTP 19 and Erlang/OTP 21) can
connect and communicate, at the cost of possible performance issues.

2. As Erlang is a programming language built to face and solve concurrent problems, al-
though each node can have a different version of a module loaded, if they want to share
functions from that module among themselves, they must all have the same version
loaded.

For this thesis work, the first condition was not an issue, as we were always using the
same version of Erlang across all nodes and, given that this condition is well-known, users of
the tool should not have any problem complying with it either.

The second condition, however, was a hardship we had to overcome due to two reasons:
first, we had to discern which were the relevant modules (i.e., modules related to the applica-
tion that has the properties we are about to test) that should be loaded across all the nodes;

36

CHAPTER 3. DEVELOPMENT

second, we had to load those modules in the proper fashion, as otherwise Erlang would not
recognize their functions and would crash.

To solve both issues, we implemented proper:ensure_code_loaded/1 (3.12)
that, together with proper:maybe_load_binary/2 (3.13), finds all modules that
have been loaded by PropEr (and therefore the ones that are needed) and loads them in the
nodes.

1 -spec maybe_load_binary([node()], module()) -> 'ok' | 'error'.
2 maybe_load_binary(Nodes, Module) ->
3 %% We check whether the module was preloaded or cover_compiled.
4 %% We ignore such modules.
5 case code:is_loaded(Module) of
6 {file, Loaded} when is_list(Loaded) ->
7 case code:get_object_code(Module) of
8 {Module, Binary, Filename} ->
9 %% Load the binary code of the module

10 %% in all the nodes.
11 _ = rpc:multicall(Nodes, code, load_binary,
12 [Module, Filename, Binary]),
13 ok;
14 error -> error
15 end;
16 _ -> ok
17 end.

Listing 3.13: Code of proper:maybe_load_binary/2

Finally, a small yet important issue we found in the Implementation stage was that, al-
though the tool is capable of growing the size of the randomly generated input used when
testing, it has no way of starting at a given size, meaning that we had to develop ourselves a
way of doing so. We came up with a function that returns the expected size for the N th test
in an execution. That way, we were able to make the workers start at a given test number
with the correct size.

3.3.5 Implementing the different strategies of test distribution

As we did previously mention in the Design section, we thought of four different ways, or
strategies, of dividing the tests and its workload among theworkers, and decided to implement
each of them so that we could pick the best of the strategies after comparing their benchmarks.

Although all four strategies were implemented as described previously, we ran into a few
issues with two of them. We will briefly cover each of the strategies, or distributions, below:

• Even strategy (3.1). This was the easiest to implement, as the only edge case to take
into account is when the number of workers is odd.

37

3.3. Implementation

• N th strategy (3.4). This strategy benefits from being an “embarrassingly parallel” one:
if the tool has to run 100 tests, that means there is a sequence of test numbers from 0
to 99 to be executed. Hence, N workers simply have to select (or compute) every N th
tests from that sequence.

• Batches strategy (3.3). While testing this implementation we found out that it had two
main problems, both related to using a large numbers of workers: there was a problem
of latency due to sending more messages than in the other strategies and with this
strategy, the tool usually hit its limit of retries of a rejected test.

• Uneven strategy (3.2). Because of the lack of time, this strategy was sadly implemented
in a rushed way and it was not be feasible to really use this strategy in later stages of
this work.

As a result of this, the benchmarking comparison was done between the even strategy and
the Nth strategy, leaving the rest to be revisited in the future.

38

Chapter 4

Testing and benchmarking

In past chapters, we mentioned that one of the main motivations behind this thesis work
was to improve the times of a property-based testing tool by extending it with parallel and

distributed testing. Throughout this chapter, we will explain how we tested this revamping of
the property-based testing tool and later measured its execution times, with properties from
different relevant projects of the Erlang community as, otherwise, we could not detect under
which circumstances the speedups happened and if they did occur.

4.1 Testing the implementation

Due to the fact that we were working on an already established project, old enough to be
considered pretty mature, and that we were expanding it with new ways of executing the
tool, we had an extensive test suite to make use of that would ensure that the tool did not
break any of its existing features because of any of our modifications.

Thanks to that wewere always sure whether, over themany iterations the implementation
took place, the changes done to the codebase did not break any of its existing features and
functionalities or if it indeed break some along the way, in which case a fix would be made.
This was easily checked, due to the project using Travis CI to do Continuous Integration; by
simply enabling it in our fork we would benefit from it too. After each push to the repository,
Travis would start an automated build to download the latest changes, build the project and
run the tool’s test suite (4.1).

Testing the parallel execution was a simple task: we only had to run the test suite of the
tool while using workers. Although our patched tool was tested with different values for the
number of workers, the biggest indicator of it working properly was that with one worker
(i.e., we do the testing sequentially, but on a worker) and two workers (i.e., two workers have
to share the work) the test suite passed.

Furthermore, as one of our objectives was to build the distributed execution upon the

39

4.2. Benchmarking

parallel one, as long as we tested the latter we could be sure the former worked.

Figure 4.1: Reports of Travis CI in the project

4.2 Benchmarking

In the next subsections we will first talk about the results of benchmarking the strategies to
decide which one was a better fit to use through the rest of the work; secondly, about the
results from benchmarking both the parallel and the distributed execution and, finally, about
the conclusions we reached from examining those results.

However, before doing that, we think it is important to establish how we carried out said
benchmarks and under which execution environments were they done.

The specs of the systems that were used to benchmark the parallel and distributed execu-
tions are the following:

• For the parallel benchmarks, we used a single machine from the Uppsala University.
It has 128 GB of RAM, runs Debian 4.19, and has 64 cores with AMD Opteron(TM)
Processor 6276 (2.3 GHz).

• For the distributed benchmarks, we used a cluster from the CITIC. Each of the 10 ma-
chines from the cluster has 8 GB of RAM, runs Ubuntu 18.04.1 LTS, and has 4 cores with
Intel Xeon E5-2650 v4 (2.2 GHz).

• In both environments, we decided to use the same Erlang/OTP version1, in order to
1The sole exception to this was when running properties from tests in Erlang/OTP itself, as we first had to

40

CHAPTER 4. TESTING AND BENCHMARKING

reduce the uncertainty that changes within the implementation of the language could
produce. The version we used was Erlang/OTP 21.2.6.

In addition, we thought it would be more relevant to benchmark specific properties than
whole modules, as with the former it is possible to cherry-pick cases that were of interest,
either because of their time complexity or because of their computational cost; whereas with
the latter only the total speedup could be noted.

Nonetheless, both stateful and stateless properties have been benchmarked, as we were
interested in observing the cost of having to isolate the workers (when testing the former
kind of properties) or not (with the latter kind of properties).

Furthermore, as we knew from the beginning of the existence of the overhead derived
from having to start dedicated nodes, we were able to set up a modified environment that
took into account it from the get-go. In this environment, we first always performed a light
round of one standard execution of the tool (i.e., 100 tests) at each number of workers we
wanted to test with (from 0 to 64 in the parallel machine, and from 0 to 8 in the distributed
cluster) so that the nodes would have the code loaded beforehand. Nevertheless, we still
measured the time it took to handle the logic of the nodes, as although the overhead was
reduced it was still of significance to note.

4.2.1 Picking a strategy to split the tests

As previously stated, only two (even distribution, 3.1, and N th sequence distribution, 3.4)
of the total of the four strategies were used and had their benchmarks compared with. In
addition, we picked the best strategy based on the parallel execution benchmarks, due to the
distributed execution being built upon the parallel one.

The properties we decided to benchmark with will always be the same throughout the
following sections, and they all come from either notable or relevant projects of the Erlang
community. Every benchmark that will be shown has been obtained the same way: first, we
ran the light round to initialize the nodes and have the relevant code loaded in them, as we
previously mentioned; then, we ran for every combination of the number of tests (usually
from 100 to 1000000) and the number of workers shown a total of ten executions and found
the median value of the execution times at each pair of values.

The benchmarks will be grouped by the project they are originated from and its type of
property will be noted (stateful vs. stateless), as its an important factor. The original imple-
mentation of PropEr (in other words, PropEr with zero workers being used) will be considered
the baseline for the benchmarks. Furthermore, some time disparities will be seen in those

compile the programming language from source and use that version to run the tests. In those cases, the version
used was Erlang/OTP 24.

41

4.2. Benchmarking

baselines when comparing the time of base PropEr between strategies; this is due to the ma-
chine where the parallel benchmarks were carried out not having all of its resources available
for us, as it was also being used by other researchers of Uppsala University. All measurements
are in seconds.

Cowlib

Cowlib [22] is a support library for manipulating web protocols, optimized for completeness
rather than speed, which provides functionalities such as parsing and building messages for
multiple Web protocols (i.e., HTTP/1.1, HTTP/2, Websockets).

We used from this project a stateful property that checks whether it is possible for a
binary to be encoded and decoded withHuffman Coding [23]. The benchmark of the property,
cow_hpack:prop_str_huffman(), is shown in 4.1.

NumTests NumWorkers Median execution time (even strat.) Median execution (N th strat.)

100 0 0.0043085 0.0043485
100 1 1.1962975 1.1904545
100 2 1.215874 1.190575
100 4 1.2535485 1.2407425
100 8 1.2596395 1.2637315
100 16 1.312265 1.3470175
100 32 1.434364 1.4816925
100 64 0.7276165 0.75407

1000 0 0.04491 0.0452655
1000 1 0.218274 0.20159
1000 2 0.1971315 0.2035755
1000 4 0.478623 0.1987635
1000 8 0.3809485 0.244365
1000 16 0.4095365 0.3248635
1000 32 0.5010915 0.441245
1000 64 0.765738 0.761062

10000 0 0.449596 0.4540915
10000 1 0.8153415 0.8395805
10000 2 0.4802005 0.513207
10000 4 2.9868485 0.3788485
10000 8 1.626953 0.310093
10000 16 1.249897 0.3778095

42

CHAPTER 4. TESTING AND BENCHMARKING

10000 32 1.0791045 0.5139375
10000 64 1.158012 0.776513

100000 0 4.4230875 4.5214735
100000 1 4.4421215 4.718555
100000 2 2.9091925 2.4595815
100000 4 27.4280975 1.3656275
100000 8 13.594567 0.83403
100000 16 7.390055 0.741856
100000 32 5.200581 0.7272785
100000 64 3.9837955 0.9227425

1000000 0 42.527384 45.471653
1000000 1 44.112267 51.263478
1000000 2 27.835295 25.8550235
1000000 4 17.0330655 13.2980945
1000000 8 9.190302 6.840301
1000000 16 4.89988 3.893725
1000000 32 3.160499 3.338172
1000000 64 2.662097 2.816228

Table 4.1: Cowlib: prop_str_huffman() parallel benchmarks

Kazoo

Kazoo [24] is one of the most powerful open-source VoIP available, designed to provide robust
telecommunication services.

Despite the fact that this project has multiple properties written for PropEr, we could
not make use of most of them for benchmarking due to how the project itself is struc-
tured, making it really hard to load all the relevant code in the dedicated nodes, and be-
cause of some of those properties testing the architecture of the project (i.e., they test
how the software behaves in regards to the nodes they use), meaning that those prop-
erties could not be used either. Nonetheless, we found an interesting stateless property,
knm_converters_tests:prop_normalize(), that checks whether a pair of tele-
phone numbers within a range can be normalized or not (4.2).

NumTests NumWorkers Median execution time (even strat.) Median execution (N th strat.)

100 0 1.2298875 1.316535
100 1 1.2063575 1.355374

43

4.2. Benchmarking

100 2 1.237179 1.0168675
100 4 1.2145395 1.047321
100 8 1.2179455 1.060538
100 16 1.2148005 1.1055665
100 32 1.2582235 1.2755245
100 64 1.3320655 1.085785

1000 0 11.237414 13.3373095
1000 1 11.9686205 9.57503
1000 2 11.985622 9.8005445
1000 4 12.2558495 10.143767
1000 8 12.394612 10.251728
1000 16 12.268519 9.8840315
1000 32 12.509876 9.34092
1000 64 8.874254 10.6230795

10000 0 108.6293275 133.44307
10000 1 105.9389425 101.571297
10000 2 120.5917215 100.7109155
10000 4 119.7413025 98.762332
10000 8 122.252236 98.6406455
10000 16 121.5295695 98.6961375
10000 32 122.8359415 123.5200135
10000 64 81.589644 108.9131675

Table 4.2: Kazoo: prop_normalize() parallel benchmarks

Zotonic

Zotonic [25] is an open-source Erlang Web Framework and content management system, ca-
pable of providing flexible high-speed applications.

It is a project made of various components, spawning over many repositories. The one of
interest for our work, however, is its standard library, as it has properties to check whether it
is capable of properly sanitize strings in UTF8. Again, we picked the one that took the most
to execute, z_string_sanitize_utf8_test:prop_s_utf8a() and show only
that one (4.3).

NumTests NumWorkers Median execution time (even strat.) Median execution (N th strat.)

100 0 0.041248 0.0396525

44

CHAPTER 4. TESTING AND BENCHMARKING

100 1 0.998514 0.962967
100 2 0.995777 0.9567575
100 4 1.004187 0.959927
100 8 1.0137185 0.9836805
100 16 1.06197 1.0513905
100 32 1.2017605 1.1950655
100 64 0.6283005 0.644169

1000 0 0.414754 0.4121415
1000 1 0.569497 0.5867375
1000 2 0.501841 0.3746395
1000 4 0.3786765 0.27011
1000 8 0.3194805 0.2498845
1000 16 0.3214465 0.287736
1000 32 0.4200385 0.4035595
1000 64 0.6683985 0.651667

10000 0 4.309788 4.2923995
10000 1 10.36273 10.3820285
10000 2 5.681023 5.3670255
10000 4 2.9683095 2.7579885
10000 8 1.6316345 1.527821
10000 16 1.0153945 1.0510645
10000 32 0.9882455 0.957311
10000 64 1.0766025 1.0587965

Table 4.3: Zotonic: prop_s_utf8a() parallel benchmarks

Diffy

Diffy [26] is a project which implements in Erlang the Diff, Match and Patch [27] library and
is used by bigger and well-known projects, such as Zotonic itself.

Even though it is a small project, it has a few properties that test its implementation.
However, we decided to look for the property that took the longest to run and use that one as
a benchmark for this report; that property, diffy_tests:prop_inner_diff(), is
a stateless one that checks whether the different algorithm is capable of properly diffing the
innermost part of an HTML document after having it modified (4.4).

NumTests NumWorkers Median execution time (even strat.) Median execution (N th strat.)

45

4.2. Benchmarking

1000 0 3.2038845 3.193476
1000 1 3.313632 3.378731
1000 2 1.7992555 1.7900135
1000 4 0.9959045 1.0011105
1000 8 0.6224575 0.634341
1000 16 0.4903785 0.5155705
1000 32 0.4742175 0.4984285
1000 64 0.591725 0.607396

10000 0 31.958289 31.9596165
10000 1 32.2683375 32.513183
10000 2 16.86818 16.7938955
10000 4 8.861493 8.8009345
10000 8 4.989744 4.8861055
10000 16 3.462057 3.3754105
10000 32 3.180591 2.973362
10000 64 3.0812605 2.8868445

100000 0 313.1051505 318.925156
100000 1 320.2353155 319.443231
100000 2 165.54899 162.098418
100000 4 86.138611 84.323321
100000 8 47.026769 46.433824
100000 16 31.986817 31.893608
100000 32 27.8032935 27.516021
100000 64 26.035407 25.8266085

Table 4.4: Diffy: prop_inner_diff() parallel benchmarks

Best strategy

Although we did more benchmarks, they have been left out of the report as otherwise, we
would have too many pages wasted on only showing benchmarks, whereas it would be more
relevant to note what can be learned from those that have been shown.

First of all, parallelization will not always bring a speedup, as seen in both of the strategies
at test runs that already took a short moment to finish (usually when using a small number of
tests). However, for test runs that would normally (i.e., with the original implementation of
PropEr) take five seconds or more, the benefits from parallelizing the tests can be perceived.

Whilst this is true for both stateless and stateful properties, this time barrier is lower on

46

CHAPTER 4. TESTING AND BENCHMARKING

the former type of properties than in the latter type, as those have to isolate the workers in
their own dedicated nodes to deal with stateful systems, instead of simply spawning more
workers in the existing node to increment the parallelism.

All in all, between the two strategies that have been benchmarked (even distribution and
N th sequence distribution), despite the fact that both have some hiccups at some number of
workers from time to time (probably related to the latency produced from having to send too
many messages), we think that the latter is a better fit for the rest of the benchmarks than the
former, as it handles better spreading the workload among the workers.

4.2.2 Parallel execution benchmarking

Due to time restraints at this point of our work, and because of the general lack of both
projects using PropEr and properties that were of interest in those projects we found, we
will hereafter only show benchmarks of properties from different test suites of Erlang/OTP
itself, as we consider it the biggest existing open-source project actually doing Property-Based
Testing in Erlang. Erlang/OTP has in some of its applications, or components, a test suite of
property-based tests, of which a few can be run with the tool that this work extended, PropEr,
whereas the rest can only be run with the paid license of EQC.

Out of the total of six applications (compiler, crypto, ftp, ssh, ssl, stdlib)
that had property-based tests, just four of them (compiler, crypto, ssh, stdlib) had
tests that could be run and used to benchmark.

compiler

This compiler of Erlang/OTP itself has in its test suite a single stateful property,
compile_prop:compile(), to checks whether it is possible to compile generated Er-
lang abstract code with no errors or not (4.5) and a series of properties to check whether
some logical properties are always held for the existing types in the BEAM or not. Again, we
picked the most time-consuming property, beam_types_prop:associativity(),
from the series of properties to show in the report (4.6).

Module:Property NumTests NumWorkers Median execution

compile_prop:compile() 1000 0 9.1924835
compile_prop:compile() 1000 1 9.238612
compile_prop:compile() 1000 2 4.8878485
compile_prop:compile() 1000 4 2.659909
compile_prop:compile() 1000 8 1.580098
compile_prop:compile() 1000 16 1.0493715
compile_prop:compile() 1000 32 1.000874

47

4.2. Benchmarking

compile_prop:compile() 1000 64 0.780156

compile_prop:compile() 10000 0 91.5118675
compile_prop:compile() 10000 1 89.170889
compile_prop:compile() 10000 2 45.227779
compile_prop:compile() 10000 4 23.1776705
compile_prop:compile() 10000 8 11.8982525
compile_prop:compile() 10000 16 6.2006945
compile_prop:compile() 10000 32 4.612698
compile_prop:compile() 10000 64 3.5742405

Table 4.5: Erlang/OTP: compiler, compile() parallel benchmarks

Module:Property NumTests NumWorkers Median execution

beam_types_prop:associativity() 5000 0 13.022068
beam_types_prop:associativity() 5000 1 13.2373845
beam_types_prop:associativity() 5000 2 6.6338075
beam_types_prop:associativity() 5000 4 3.4362205
beam_types_prop:associativity() 5000 8 1.870995
beam_types_prop:associativity() 5000 16 1.122578
beam_types_prop:associativity() 5000 32 0.8995795
beam_types_prop:associativity() 5000 64 0.9441975

Table 4.6: Erlang/OTP: compiler, associativity() parallel benchmarks

crypto

As Erlang/OTP supports multiple cryptography ciphers and has support for the OpenSSL

cryptolib, and more importantly recently changed its API to deal with changes in the afore-
mentioned cryptolib, we think the properties from this application might be interesting to
benchmark. Both properties, crypto_ng_api:prop__crypto_one_time() (4.7)
and crypto_ng_api:prop__crypto_init_update_final() (4.8), are state-
ful and test the new implementation of the API.

Module:Property NumTests NumWorkers Median execution

crypto_ng_api:prop__crypto_one_time() 10000 0 110.628972
crypto_ng_api:prop__crypto_one_time() 10000 1 145.8276025
crypto_ng_api:prop__crypto_one_time() 10000 2 81.5819725

48

CHAPTER 4. TESTING AND BENCHMARKING

crypto_ng_api:prop__crypto_one_time() 10000 4 41.218044
crypto_ng_api:prop__crypto_one_time() 10000 8 21.464494
crypto_ng_api:prop__crypto_one_time() 10000 16 11.1920615
crypto_ng_api:prop__crypto_one_time() 10000 32 9.095284
crypto_ng_api:prop__crypto_one_time() 10000 64 7.3540885

Table 4.7: Erlang/OTP: crypto, prop__crypto_one_time() parallel benchmarks

Module:Property NumTests NumWorkers Median execution

crypto_ng_api:prop__crypto_init_update_final() 10000 0 110.2280835
crypto_ng_api:prop__crypto_init_update_final() 10000 1 167.8912475
crypto_ng_api:prop__crypto_init_update_final() 10000 2 83.8977575
crypto_ng_api:prop__crypto_init_update_final() 10000 4 42.5350435
crypto_ng_api:prop__crypto_init_update_final() 10000 8 22.124254
crypto_ng_api:prop__crypto_init_update_final() 10000 16 11.623337
crypto_ng_api:prop__crypto_init_update_final() 10000 32 8.7799665
crypto_ng_api:prop__crypto_init_update_final() 10000 64 7.294942

Table 4.8: Erlang/OTP: crypto, prop__crypto_init_update_final() parallel
benchmarks

ssh

At the risk of repeating ourselves, Erlang/OTP is a functional programming language built
to solve concurrency related issues while providing a robust platform to develop and work
on. Since most Erlang applications are distributed ones and those run on nodes, either on one
machine or server or in multiple ones, it has a built-in ssh application included to help start
clients or daemons and run commands in a shell on a remote server with the language itself.

This component of Erlang/OTP has only two properties to check whether it
is possible to properly encode, or first decode and then encode a ssh message.
Once again, in this report, we will include only the latter of the two properties,
ssh_eqc_encode_decode:prop_ssh_decode_encode(), as it was the most
time-consuming of the two (although in this case it was pretty fast by itself and we had to
scale the number of tests up to get proper benchmarks).

Module:Property NumTests NumWorkers Median execution

ssh_eqc_encode_decode:prop_ssh_decode_encode() 100 0 0.0888925

49

4.2. Benchmarking

ssh_eqc_encode_decode:prop_ssh_decode_encode() 100 1 0.430613
ssh_eqc_encode_decode:prop_ssh_decode_encode() 100 2 0.3949945
ssh_eqc_encode_decode:prop_ssh_decode_encode() 100 4 0.3877615
ssh_eqc_encode_decode:prop_ssh_decode_encode() 100 8 0.416598
ssh_eqc_encode_decode:prop_ssh_decode_encode() 100 16 0.44926
ssh_eqc_encode_decode:prop_ssh_decode_encode() 100 32 0.5559945
ssh_eqc_encode_decode:prop_ssh_decode_encode() 100 64 0.4801235

ssh_eqc_encode_decode:prop_ssh_decode_encode() 1000 0 0.848077
ssh_eqc_encode_decode:prop_ssh_decode_encode() 1000 1 0.9098715
ssh_eqc_encode_decode:prop_ssh_decode_encode() 1000 2 0.510886
ssh_eqc_encode_decode:prop_ssh_decode_encode() 1000 4 0.319352
ssh_eqc_encode_decode:prop_ssh_decode_encode() 1000 8 0.2444555
ssh_eqc_encode_decode:prop_ssh_decode_encode() 1000 16 0.2411055
ssh_eqc_encode_decode:prop_ssh_decode_encode() 1000 32 0.323419
ssh_eqc_encode_decode:prop_ssh_decode_encode() 1000 64 0.5012535

ssh_eqc_encode_decode:prop_ssh_decode_encode() 10000 0 8.4215655
ssh_eqc_encode_decode:prop_ssh_decode_encode() 10000 1 8.4747755
ssh_eqc_encode_decode:prop_ssh_decode_encode() 10000 2 4.2756365
ssh_eqc_encode_decode:prop_ssh_decode_encode() 10000 4 2.2221815
ssh_eqc_encode_decode:prop_ssh_decode_encode() 10000 8 1.2049885
ssh_eqc_encode_decode:prop_ssh_decode_encode() 10000 16 0.8060915
ssh_eqc_encode_decode:prop_ssh_decode_encode() 10000 32 0.7260185
ssh_eqc_encode_decode:prop_ssh_decode_encode() 10000 64 0.8326165

ssh_eqc_encode_decode:prop_ssh_decode_encode() 100000 0 84.384597
ssh_eqc_encode_decode:prop_ssh_decode_encode() 100000 1 83.621504
ssh_eqc_encode_decode:prop_ssh_decode_encode() 100000 2 41.946111
ssh_eqc_encode_decode:prop_ssh_decode_encode() 100000 4 21.035486
ssh_eqc_encode_decode:prop_ssh_decode_encode() 100000 8 10.8567325
ssh_eqc_encode_decode:prop_ssh_decode_encode() 100000 16 5.6160635
ssh_eqc_encode_decode:prop_ssh_decode_encode() 100000 32 4.5863795
ssh_eqc_encode_decode:prop_ssh_decode_encode() 100000 64 3.750699

Table 4.9: Erlang/OTP: ssh, prop_ssh_decode_encode() parallel benchmarks

50

CHAPTER 4. TESTING AND BENCHMARKING

stdlib

In Erlang, although it is possible and there is an official API to document modules and func-
tions with notations, said documentation could only be checked in the form of HTML docu-
ments. Recently, however, Erlang/OTP has been changed to include the documentation of a
module in its compiled file in a standardized way, so that this information can be retrieved
and displayed in more ways (i.e., from the interactive shell). As a result of that, the standard
library added to its test suite a property, shell_docs_prop:prop_render(), that
checks whether it is possible to render, validate and normalize the documentation of a module
with the new format.

Module:Property NumTests NumWorkers Median execution

shell_docs_prop:prop_render() 10000 0 60.293814
shell_docs_prop:prop_render() 10000 1 104.6819455
shell_docs_prop:prop_render() 10000 2 53.814188
shell_docs_prop:prop_render() 10000 4 29.4466085
shell_docs_prop:prop_render() 10000 8 18.669691
shell_docs_prop:prop_render() 10000 16 9.155277
shell_docs_prop:prop_render() 10000 32 5.844506
shell_docs_prop:prop_render() 10000 64 4.1181045

Table 4.10: Erlang/OTP: stdlib, prop_render() parallel benchmarks

4.2.3 Distributed execution benchmarking

Because we will be benchmarking the same properties as in the previous section, where we
showed the parallel benchmarks (4.2.2), we will simply show hereafter the tables of bench-
marks and we will talk about the results of both benchmarks in the Conclusions section of
this chapter (4.3).

Also, we consider of importance to note that the following tables will have fewer workers
per table (i.e., fewer rows) than in the previous section, as sadly we could only run in the
cluster the tool with up to 16 workers, so the rows related to 32 and 64 workers have been
left out.

compiler

Module:Property NumTests NumWorkers Median execution

compile_prop:compile() 1000 0 3.531327

51

4.2. Benchmarking

compile_prop:compile() 1000 1 3.550182
compile_prop:compile() 1000 2 1.884106
compile_prop:compile() 1000 4 1.0266975
compile_prop:compile() 1000 8 0.6090585
compile_prop:compile() 1000 16 0.4183475

compile_prop:compile() 10000 0 35.642739
compile_prop:compile() 10000 1 35.058796
compile_prop:compile() 10000 2 18.3370905
compile_prop:compile() 10000 4 9.2465115
compile_prop:compile() 10000 8 4.835463
compile_prop:compile() 10000 16 2.492885

Table 4.11: Erlang/OTP: compiler, compile() distributed benchmarks

Module:Property NumTests NumWorkers Median execution

beam_types_prop:associativity() 5000 0 4.3008585
beam_types_prop:associativity() 5000 1 4.4070315
beam_types_prop:associativity() 5000 2 2.319693
beam_types_prop:associativity() 5000 4 1.2771485
beam_types_prop:associativity() 5000 8 0.7332075
beam_types_prop:associativity() 5000 16 0.4896175

Table 4.12: Erlang/OTP: compiler, associativity() distributed benchmarks

crypto

Module:Property NumTests NumWorkers Median execution

crypto_ng_api:prop__crypto_one_time() 10000 0 29.0995205
crypto_ng_api:prop__crypto_one_time() 10000 1 40.7774245
crypto_ng_api:prop__crypto_one_time() 10000 2 21.125296
crypto_ng_api:prop__crypto_one_time() 10000 4 10.7539585
crypto_ng_api:prop__crypto_one_time() 10000 8 5.7919015
crypto_ng_api:prop__crypto_one_time() 10000 16 3.08204

Table 4.13: Erlang/OTP: crypto, prop__crypto_one_time() distributed bench-
marks

52

CHAPTER 4. TESTING AND BENCHMARKING

Module:Property NumTests NumWorkers Median execution

crypto_ng_api:prop__crypto_init_update_final() 10000 0 29.67034
crypto_ng_api:prop__crypto_init_update_final() 10000 1 41.0459865
crypto_ng_api:prop__crypto_init_update_final() 10000 2 21.029765
crypto_ng_api:prop__crypto_init_update_final() 10000 4 10.8909075
crypto_ng_api:prop__crypto_init_update_final() 10000 8 5.779673
crypto_ng_api:prop__crypto_init_update_final() 10000 16 3.072786

Table 4.14: Erlang/OTP: crypto, prop__crypto_init_update_final() dis-
tributed benchmarks

ssh

Module:Property NumTests NumWorkers Median execution

ssh_eqc_encode_decode:prop_ssh_decode_encode() 100 0 0.024615
ssh_eqc_encode_decode:prop_ssh_decode_encode() 100 1 0.1149505
ssh_eqc_encode_decode:prop_ssh_decode_encode() 100 2 0.111211
ssh_eqc_encode_decode:prop_ssh_decode_encode() 100 4 0.108683
ssh_eqc_encode_decode:prop_ssh_decode_encode() 100 8 0.115139
ssh_eqc_encode_decode:prop_ssh_decode_encode() 100 16 0.1590255

ssh_eqc_encode_decode:prop_ssh_decode_encode() 1000 0 0.251863
ssh_eqc_encode_decode:prop_ssh_decode_encode() 1000 1 0.3445005
ssh_eqc_encode_decode:prop_ssh_decode_encode() 1000 2 0.2239095
ssh_eqc_encode_decode:prop_ssh_decode_encode() 1000 4 0.169825
ssh_eqc_encode_decode:prop_ssh_decode_encode() 1000 8 0.1619355
ssh_eqc_encode_decode:prop_ssh_decode_encode() 1000 16 0.1821265

ssh_eqc_encode_decode:prop_ssh_decode_encode() 10000 0 2.453757
ssh_eqc_encode_decode:prop_ssh_decode_encode() 10000 1 2.5533595
ssh_eqc_encode_decode:prop_ssh_decode_encode() 10000 2 1.3547285
ssh_eqc_encode_decode:prop_ssh_decode_encode() 10000 4 0.7534805
ssh_eqc_encode_decode:prop_ssh_decode_encode() 10000 8 0.463339
ssh_eqc_encode_decode:prop_ssh_decode_encode() 10000 16 0.3546005

ssh_eqc_encode_decode:prop_ssh_decode_encode() 100000 0 24.4840895
ssh_eqc_encode_decode:prop_ssh_decode_encode() 100000 1 24.416444
ssh_eqc_encode_decode:prop_ssh_decode_encode() 100000 2 12.6548485
ssh_eqc_encode_decode:prop_ssh_decode_encode() 100000 4 6.49339

53

4.3. Conclusions

ssh_eqc_encode_decode:prop_ssh_decode_encode() 100000 8 3.4009055
ssh_eqc_encode_decode:prop_ssh_decode_encode() 100000 16 1.808103

Table 4.15: Erlang/OTP: ssh, prop_ssh_decode_encode() distributed benchmarks

stdlib

Module:Property NumTests NumWorkers Median execution

shell_docs_prop:prop_render() 10000 0 18.6674395
shell_docs_prop:prop_render() 10000 1 28.6606325
shell_docs_prop:prop_render() 10000 2 15.1546485
shell_docs_prop:prop_render() 10000 4 8.2777155
shell_docs_prop:prop_render() 10000 8 4.481394
shell_docs_prop:prop_render() 10000 16 3.5812895

Table 4.16: Erlang/OTP: stdlib, prop_render() distributed benchmarks

4.3 Conclusions

There are a few conclusions to draw from looking at both benchmarks and taking into account
the cost of implementing each new way of execution.

To start with, we want to state that although the reader might feel inclined to compare
each benchmark against the other, that should not be done as the systems used to benchmark
were radically different from each other. Given that the machine where the parallel bench-
marks were done was always being used by more researchers, it is normal for its baseline
results (sequential PropEr) to be slower when running a certain number of tests compared
with those results from the baseline of the distributed benchmarks, where the machine was
always completely free of any other program consuming resources. In short, both settings
are valid and we will be simply commenting on the results we obtained from each.

Secondly, as we will be showing diagrams with the speedup obtained throughout the
different properties we benchmarked, we wanted to explain what that value can mean:

• If the speedup value obtained is between 0 and 1, the parallelization did not help to
shorten the execution times, meaning that the program runs in about the same time as
its sequential version.

• If the speedup value, however, is between 0 and N, with N being the number of CPUs
used, the parallel program runs faster than its sequential counterpart. Ideally, we would

54

CHAPTER 4. TESTING AND BENCHMARKING

want to have a speedup value of N, as that would mean that the work has been evenly
distributed among the CPUs.

• Finally, if the speedup value happens to be bigger than N, which can happen in rare
situations, it is a superlinear speedup and it means that the program has been sped up
by more than the rise of CPUs.

Both settings did show the advantages of turning the property-based testing tool into a
concurrent one. However, the benefits are greater in the distributed execution than in the
parallel execution because we have a bigger total number of resources for the program to
make use of (in other words, more machines instead of one) and there is no machine handling
that many nodes at the same time; whereas in the parallel version, the more workers you use
the more stress you put in your single machine.

Furthermore, in both settings, we can notice that running a single worker might be worse
(i.e., a spike can happen) than running the sequential tool, as there is an extra latency produced
from handling the workers and nodes, and even more so when testing stateful properties.

Finally, as seen in the tables throughout the benchmarks, concurrency does indeed speed
up the program, but first, the tests to run should take a bit of time for those benefits to appear.
In other words, if your property is being tested 100 times and it takes 1 second to do so, it is
really hard to shorten such an execution time; whereas if your running those 100 tests takes
4-5 seconds, at some point of increasing the number of workers, the testing will be speeded
up.

55

4.3. Conclusions

Figure 4.2: Parallel execution

Figure 4.3: Distributed execution

Figure 4.4: Results of compile_prop:compile()

56

CHAPTER 4. TESTING AND BENCHMARKING

Figure 4.5: Parallel execution

Figure 4.6: Distributed execution

Figure 4.7: Results of beam_types_prop:associativity()

57

4.3. Conclusions

Figure 4.8: Parallel execution

Figure 4.9: Distributed execution

Figure 4.10: Results of crypto_ng_api:prop__crypto_one_time()

58

CHAPTER 4. TESTING AND BENCHMARKING

Figure 4.11: Parallel execution

Figure 4.12: Distributed execution

Figure 4.13: Results of crypto_ng_api:prop__crypto_init_update_final

59

4.3. Conclusions

Figure 4.14: Parallel execution

Figure 4.15: Distributed execution

Figure 4.16: Results of ssh_eqc_encode_decode:prop_ssh_decode_encode()

60

CHAPTER 4. TESTING AND BENCHMARKING

Figure 4.17: Parallel execution

Figure 4.18: Distributed execution

Figure 4.19: Results of shell_docs_prop:prop_render()

61

4.3. Conclusions

62

Chapter 5

Conclusions

In this final chapter of the report, we will first contrast the proposed objectives we had
set for the project with the reached ones at the end. We will also talk about the lessons

learned from carrying out this project and we will end up by talking about future possible
improvements that could be done to the tool.

5.1 Follow-up

The main goal of this project was to extend the most powerful property-based testing tool for
Erlang with parallel and distributed execution. We wanted to make use of the full potential of
the programming language the tool was written in and to easily modify the existing codebase
with as little impact as possible (all while following the best of practices) to bring a new usable
version of the tool with both new manners of execution. Finally, we wanted to measure the
obtainable speedup of our patched version of the tool by running it both in a cluster to test
the distributed execution and in a single powerful machine to test the parallel execution.

Both implementations were done successfully and the tool can now be executed in a par-
allel or distributed fashion. The benchmarks could be improved upon, but the lack of time at
the end of the project and the general absence of well-known projects, or at least projects used
by the Erlang community, that had property-based tests usable by PropEr was a big deciding
factor in the end.

5.1.1 Impact on the code

The property-based testing tool we extended in this project, PropEr, consisted of 12729 lines
of Erlang code (as shown in 5.1) in the commit we started working on. After our patches, and
also because of the upstream repository having some updates of their own that were added to
our version too, the final number of lines of Erlang code the tool has is 14007. It is important

63

5.1. Follow-up

to note, however, that the real number of changes done to the codebase is 490 insertions and
23 deletions (as shown in the diff of 5.2).

This means that, in order to bring parallel and distributed execution to the tool, the total
number of code changes we did was just 513, which is around 3.66% of the total code of the
tool.

1 $ cloc proper_before/
2 --
3 Language files blank comment code
4 --
5 Erlang 68 2294 4494 127297
6 # elided output as it is not relevant to the report #
7

8 $ cloc proper_after/
9 --

10 Language files blank comment code
11 --
12 Erlang 77 2638 5080 14007
13 # elided output as it is not relevant to the report #

Listing 5.1: Comparison of LOC (Lines of Code) PropEr had before and after our work

1 $ git diff upstream/master --stat
2 Makefile | 2 +-
3 include/proper_internal.hrl | 15 +++++
4 src/proper.erl | 476 ++++++++++++++++++++++++++++++++
5 ++++++++++++++++++++++++++++++++
6 ++++++++++++++++++++++++++++++++
7 ++++++++++++++++++++++++++++++++
8 ++----
9 test/proper_specs_tests.erl | 4 +-

10 test/proper_tests.erl | 16 +++--
11 5 files changed, 490 insertions(+), 23 deletions(-)

Listing 5.2: Total of additions and deletions done throughout our work

5.1.2 Lessons learned

Given that the property-based testing tool we decided to extend is one that works and is
very much cared about by its maintainers and users, this work meant that the student had
to develop with the utmost care and was their first look into an open-source application in
Erlang used by many professionals.

Thus, this project helped the student to further understand and practice not only their
knowledge of Erlang itself but also what it meant to make and use a concurrent application

64

CHAPTER 5. CONCLUSIONS

and how to modify an existing one to make it parallel or distributed. This was done by read-
ing papers related to the subject of making an Erlang program more fault-tolerant [28] and
the benefits of the parallelization of an existing Erlang program [29]. Moreover, due to the
relevance of the application in the area of Property-Based Testing, the student was able to
deepen their knowledge of this approach to testing.

Furthermore, this work helped the student understand the importance of following a good
methodology, as otherwise, it is easy to lose track of everything, and focusing on short sprints
helps to break down the project into smaller bits. In addition, the help and guidance of both
supervisors has been a critical point of the project, and the student has not only learned that
the knowledge from those with years of experience can be very useful when in need of help,
but that there is no shame in asking for help and that knowing how to communicate clearly
is vital.

Finally, developing such an interesting project related to a field of software that is usually
not very liked, testing, has helped the student realize the importance and advantages of having
good test suites and knowing different methods of testing.

5.2 Future work

As future work for this project, there are a few things left to do:

• Revise the two strategies to split the tests that could not be benchmarked due to imple-
mentation issues.

• Clean up the code and apply any suggestions from the feedback of the creator of the
tool before creating a Pull Request to the original repository to have the changes of this
work go upstream.

• The experience from carrying out this project and the results obtained from it will be
also turned into a scientific paper that will be published later.

65

5.2. Future work

66

Appendices

67

List of Acronyms

BEAM Bogdan/Björn’s Erlang Abstract Machine. 8, 47

EQC Erlang Quickcheck. 47

ERTS Erlang RunTime System. 36

OTP Open Telecom Platform. 7, 36

PBT Property-Based Testing. 1

PID process identifier. 8

spg Scalable Process Groups. 3

69

List of Acronyms

70

Glossary

upstream Original repository from where the code has been forked.. 3

71

Glossary

72

Bibliography

[1] E. W. Dijkstra, “On the reliability of programs (EWD303).” [Online]. Available:
http://www.cs.utexas.edu/users/EWD/transcriptions/EWD03xx/EWD303.html

[2] K. Claessen and J. Hughes, “QuickCheck: A Lightweight Tool for Random
Testing of Haskell Programs,” Proceedings of the ACM SIGPLAN International

Conference on Functional Programming, ICFP, vol. 46, 01 2000. [Online]. Available:
https://doi.org/10.1145/1988042.1988046

[3] ——. (2000) Quickcheck. [Online]. Available: https://hackage.haskell.org/package/
QuickCheck

[4] M. Papadakis and K. Sagonas, “A PropEr Integration of Types and Function
Specifications with Property-Based Testing,” in Proceedings of the 2011 ACM

SIGPLAN Erlang Workshop. New York, NY: ACM Press, Sep. 2011, pp. 39–50.
[Online]. Available: https://doi.org/10.1145/2034654.2034663

[5] PropEr: A QuickCheck-Inspired Property-Based Testing Tool for Erlang. [Online].
Available: https://proper-testing.github.io

[6] R. Hickey and R. Drape. (2014) test.check. [Online]. Available: https://github.com/
clojure/test.check

[7] M. Fedorov. (2019) Scalable Process Groups. [Online]. Available: https://github.com/
max-au/spg

[8] Fork of PropEr in GitHub. [Online]. Available: https://github.com/pablocostass/proper

[9] PropEr repository in GitHub. [Online]. Available: https://github.com/proper-testing/
proper

[10] J. Armstrong, Software for a Concurrent World, 2nd ed. Pragmatic Bookshelf, 2013.

73

http://www.cs.utexas.edu/users/EWD/transcriptions/EWD03xx/EWD303.html
https://doi.org/10.1145/1988042.1988046
https://hackage.haskell.org/package/QuickCheck
https://hackage.haskell.org/package/QuickCheck
https://doi.org/10.1145/2034654.2034663
https://proper-testing.github.io
https://github.com/clojure/test.check
https://github.com/clojure/test.check
https://github.com/max-au/spg
https://github.com/max-au/spg
https://github.com/pablocostass/proper
https://github.com/proper-testing/proper
https://github.com/proper-testing/proper

Bibliography

[11] C. Hewitt, P. Bishop, and R. Steiger, “A Universal Modular ACTOR Formalism for
Artificial Intelligence,” in Proceedings of the 3rd International Joint Conference on

Artificial Intelligence, ser. IJCAI’73. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 1973, p. 235–245. [Online]. Available: https://dl.acm.org/doi/10.
5555/1624775.1624804

[12] M. Papadakis, “Automatic Random Testing of Function Properties from Specifications,”
Diploma thesis, National Technical University of Athens, School of Electrical
and Computer Engineering, Oct. 2010. [Online]. Available: https://proper-testing.
github.io/papers/manolis-thesis.pdf

[13] E. Arvaniti, “Automated Random Model-Based Testing of Stateful Systems,” Diploma
thesis, National Technical University of Athens, School of Electrical and Computer
Engineering, Jul. 2011. [Online]. Available: https://proper-testing.github.io/papers/
eirini-thesis.pdf

[14] Proper’s documentation. [Online]. Available: https://proper-testing.github.io/apidocs/

[15] Getting Started with Erlang. [Online]. Available: http://erlang.org/documentation/
doc-5.3/doc/getting_started/getting_started.html

[16] rebar3. [Online]. Available: https://www.rebar3.org/

[17] F. Hebert. rebar3 proper. [Online]. Available: https://github.com/ferd/rebar3_proper

[18] A PropEr statem tutorial. [Online]. Available: https://proper-testing.github.io/tutorials/
PropEr_testing_of_generic_servers.html

[19] Nifty - nif interface generator. [Online]. Available: http://parapluu.github.io/nifty/

[20] PropEr’s licence: GPL-3.0. [Online]. Available: https://github.com/proper-testing/
proper/blob/master/COPYING

[21] Erlang’s Directory Structure Guidelines for a Development Environment.
[Online]. Available: https://erlang.org/doc/design_principles/applications.html#
directory-structure-guidelines-for-a-development-environment

[22] Cowlib. [Online]. Available: https://github.com/ninenines/cowlib

[23] V. Raghunathan. Huffman Coding (ECE264). [Online]. Available: https://engineering.
purdue.edu/ece264/17au/hw/HW13?alt=huffman

[24] Kazoo. [Online]. Available: https://www.2600hz.org/

74

https://dl.acm.org/doi/10.5555/1624775.1624804
https://dl.acm.org/doi/10.5555/1624775.1624804
https://proper-testing.github.io/papers/manolis-thesis.pdf
https://proper-testing.github.io/papers/manolis-thesis.pdf
https://proper-testing.github.io/papers/eirini-thesis.pdf
https://proper-testing.github.io/papers/eirini-thesis.pdf
https://proper-testing.github.io/apidocs/
http://erlang.org/documentation/doc-5.3/doc/getting_started/getting_started.html
http://erlang.org/documentation/doc-5.3/doc/getting_started/getting_started.html
https://www.rebar3.org/
https://github.com/ferd/rebar3_proper
https://proper-testing.github.io/tutorials/PropEr_testing_of_generic_servers.html
https://proper-testing.github.io/tutorials/PropEr_testing_of_generic_servers.html
http://parapluu.github.io/nifty/
https://github.com/proper-testing/proper/blob/master/COPYING
https://github.com/proper-testing/proper/blob/master/COPYING
https://erlang.org/doc/design_principles/applications.html#directory-structure-guidelines-for-a-development-environment
https://erlang.org/doc/design_principles/applications.html#directory-structure-guidelines-for-a-development-environment
https://github.com/ninenines/cowlib
https://engineering.purdue.edu/ece264/17au/hw/HW13?alt=huffman
https://engineering.purdue.edu/ece264/17au/hw/HW13?alt=huffman
https://www.2600hz.org/

BIBLIOGRAPHY

[25] Zotonic. [Online]. Available: http://zotonic.com/

[26] Diffy. [Online]. Available: https://github.com/mmzeeman/diffy

[27] N. Fraser. (2006, Apr.) Diff strategies. [Online]. Available: https://neil.fraser.name/
writing/diff/

[28] A. Löscher and K. Sagonas, “The Nifty Way to Call Hell from Heaven,” in Trends

in Functional Programming. New York, NY, USA: Association for Computing
Machinery, 2016, p. 1–11. [Online]. Available: https://doi.org/10.1145/2975969.
2975970

[29] S. Aronis and K. Sagonas, “On Using Erlang for Parallelization,” in Trends in

Functional Programming, H.-W. Loidl and R. Peña, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2013, pp. 295–310. [Online]. Available: https:
//link.springer.com/chapter/10.1007/978-3-642-40447-4_19

75

http://zotonic.com/
https://github.com/mmzeeman/diffy
https://neil.fraser.name/writing/diff/
https://neil.fraser.name/writing/diff/
https://doi.org/10.1145/2975969.2975970
https://doi.org/10.1145/2975969.2975970
https://link.springer.com/chapter/10.1007/978-3-642-40447-4_19
https://link.springer.com/chapter/10.1007/978-3-642-40447-4_19

Bibliography

76

	Introduction
	Motivation
	Objectives
	Methodology
	Work plan
	Project cost

	Report layout

	Background
	Erlang/OTP
	Property-Based Testing
	Unit Testing
	Property-Based Testing

	PropEr
	Stateless vs. stateful properties

	Development
	Design
	Proposed design
	Test distribution among workers

	A PropEr study
	Implementation
	Preamble
	Project structure
	A PropEr implementation
	Problems faced during the Implementation stage
	Implementing the different strategies of test distribution

	Testing and benchmarking
	Testing the implementation
	Benchmarking
	Picking a strategy to split the tests
	Parallel execution benchmarking
	Distributed execution benchmarking

	Conclusions

	Conclusions
	Follow-up
	Impact on the code
	Lessons learned

	Future work

	List of Acronyms
	Glossary
	Bibliography

